首页机械学
0


不确定性条件下模型的概率决策

Probabilistic Decision-Making Under Model Uncertainty
课程网址: http://videolectures.net/cmulls08_pineau_pdm/  
主讲教师: Joelle Pineau
开课单位: 麦吉尔大学
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
部分可观测马尔可夫决策过程为不确定性下的决策提供了一个丰富的数学框架。近年来,在给出域参数模型的基础上,提出了一系列优化作用选择的方法。然而,在许多应用中,必须使用一组有限的轨迹来学习这个模型。当这些数据被证明很难收集或很昂贵时,通常情况下,结果模型的定义很差或不精确。在本文中,我将介绍两个关于模型不确定性下决策问题的最新结果。在上半部分,我将描述一种根据经验转换和观察模型的统计来估计价值函数的偏差和方差的方法。这些错误术语可以用来有意义地比较不同策略的价值。在下半部分,我将介绍一种贝叶斯方法,该方法旨在同时改进模型并选择好的行为。这两种方法的性能将通过机器人技术和医疗设计领域的问题来说明。
课程简介: Partially Observable Markov Decision Processes offer a rich mathematical framework for decision-making under uncertainty. In recent years, a number of methods have been developed to optimize the choice of action, given a parametric model of the domain. In many applications, however, this model must be learned using a finite set of trajectories. When this data proves difficult or expensive to collect, it is often the case that the resulting model is poorly or imprecisely defined. In this talk, I will present two recent results on the topic of decision-making under model uncertainty. In the first half, I will describe a method for estimating the bias and variance of the value function in terms of the statistics of the empirical transition and observation model. Such error terms can be used to meaningfully compare the value of different policies. In the second half, I will present a bayesian approach designed to simultaneously improve the model and select good actions. Performance of the two methods will be illustrated using problems drawn from the fields of robotics and medical treatment design.
关 键 词: 机械学习; 数学模型; 函数
课程来源: 视频讲座网
最后编审: 2019-12-12:cwx
阅读次数: 65