美国陆军旋翼机机械健康诊断分类器开发过程A Classifier Development Process for Mechanical Health Diagnostics on US Army Rotorcraft |
|
课程网址: | https://videolectures.net/videos/kdd2016_wilson_mechanical_health |
主讲教师: | Andrew W. Wilson |
开课单位: | KDD 2016研讨会 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 由于各种历史事件,美国陆军航空工程局(AED)拥有一个独特的大型数据集,描述了旋翼机系统的机械健康状况。该数据集包括有关重要时期和飞机数量的非关键故障和磨损的详细信息,每架飞机都装有仪器,以便在每次飞行中测量机械振动和其他参数。利用这些数据的尝试促使AED研究了机器学习和数据知识发现(KDD)技术的有效性。本文概述了AED开发的一种名为Crawler的工具,用于自动化创建诊断分类器的过程,以及它在两个具体问题上的应用:提高部署的变速箱健康分类器的可用性和性能,以及快速开发一个模型来搜索传感器数据以查找新识别的故障模式。 |
课程简介: | Due to various historical events, the Aviation Engineering Directorate (AED) of the United States Army has a unique, large data set describing the mechanical health of rotorcraft systems. This data set includes detailed information regarding non-critical failures and wear over a significant period and number of aircraft, each of which is instrumented to take measurements of mechanical vibrations and other parameters every flight. Attempts to utilize this data led AED to investigate the efficacy of machine learning and knowledge discovery from data (KDD) techniques. This paper outlines a tool–termed the Crawler–which AED developed to automate the process of creating diagnostic classifiers, and its application to two specific problems of interest: improving the usability and performance of a deployed gearbox health classifier, and rapidly developing a model to search sensor data for a newly identified fault mode. |
关 键 词: | 旋翼机机械; 健康诊断; 分类器 |
课程来源: | 视频讲座网 |
数据采集: | 2025-03-11:liyq |
最后编审: | 2025-03-11:liyq |
阅读次数: | 6 |