深度学习:研究前馈深度神经网络超参数,并与浅层生物活性数据建模方法进行性能比较Deep‐Learning: Investigating feed‐forward Deep Neural Networks hyper‐parameters and Comparison of Performance to Shallow Methods for Modeling Bioactivity Data |
|
课程网址: | https://videolectures.net/videos/kdd2016_huan_deep_learning |
主讲教师: | Jun (Luke) Huan |
开课单位: | KDD 2016研讨会 |
开课时间: | 2025-02-04 |
课程语种: | 英语 |
中文简介: | 近年来,人工神经网络(ANNs)的研究重新兴起,现在处于深度学习的保护之下,由于方法论和计算能力的重大突破,它变得非常受欢迎。深度学习方法是表示学习算法的一部分,它试图从数据中提取和组织有区别的信息。最近报道的DL技术在众包QSAR和预测毒理学竞赛中的成功表明,这些方法是药物发现和毒理学研究的有力工具。然而,据报道,深度学习技术在模拟小分子复杂生物活性数据方面的应用仍然有限。在本次演讲中,我将介绍我们最近在优化前馈深度神经网络(DNN)超参数方面的工作,以及与浅层方法相比这些方法的性能评估。在我们的研究中,使用从ChEMBL库中组装的7个不同的生物活性数据集,结合圆形指纹作为分子描述符,比较了48个DNN、24个随机森林、20个SVM和6个朴素贝叶斯任意但合理选择的配置。采用非参数Wilcoxon配对单秩检验来比较DNN与RF、SVM和NB的性能。总体而言,发现具有2个隐藏层的DNN,每个隐藏层2000个神经元,ReLU激活函数和Dropout正则化技术在所有测试数据集中都取得了很强的分类性能。我们的结果表明,DNN是模拟复杂生物活性数据的强大建模技术。 |
课程简介: | In recent years, research in Artificial Neural Networks (ANNs) has resurged, now under the Deep-Learning umbrella, and grown extremely popular due to major breakthroughs in methodological and computing capabilities. Deep-Learning methods are part of representation-learning algorithms that attempt to extract and organize discriminative information from the data. Recently reported success of DL techniques in crowd-sourced QSARs and predictive toxicology competitions has showcased these methods as powerful tools for drug-discovery and toxicology research. Nevertheless, reported applications of Deep Learning techniques for modeling complex bioactivity data for small molecules remain still limited. In this talk I will present our recent work on optimizing feed-forward Deep Neural Nets (DNNs) hyper-parameters and performance evaluation of these methods as compared to shallow methods. In our study 48 DNNs, 24 Random Forest, 20 SVM and 6 Naïve Bayes arbitrary but reasonably selected configurations were compared employing 7 diverse bioactivity datasets assembled from ChEMBL repository combined with circular fingerprints as molecular descriptors. The non-parametric Wilcoxon paired singed-rank test was employed to compare the performance of DNN to RF, SVM and NB. Overall it was found that DNNs with 2 hidden layers, 2,000 neurons per each hidden layer, ReLU activation function and Dropout regularization technique achieved strong classification performance across all tested datasets. Our results demonstrate that DNNs are powerful modeling techniques for modeling complex bioactivity data. |
关 键 词: | 深度学习; 超参数; 数据建模; 性能比较 |
课程来源: | 视频讲座网 |
数据采集: | 2025-03-16:liyq |
最后编审: | 2025-03-20:liyy |
阅读次数: | 7 |