首页机械学
0


通过独立成分分析发现循环因果模型

Discovering Cyclic Causal Models by Independent Components Analysis
课程网址: http://videolectures.net/cmulls08_lacerda_dcc/  
主讲教师: Gustavo Lacerda
开课单位: 卡内基梅隆大学
开课时间: 2008-02-27
课程语种: 英语
中文简介:
本文将首先介绍Shimizu等人(2006)基于ICA的方法(Lingam),从因果充分的连续值观测数据中发现非循环(DAG)线性结构方程模型(SEMS)。这是值得注意的,因为当没有实验数据时,它决定了每个因果箭头的方向。我们的工作概括了上述内容。通过放松非循环性约束,我们的方法LingDg能够发现任意有向图(DG)线性SEM。给出了用岭差分法进行因果发现的各种算法简图,并给出了一种算法的仿真结果。当误差项为非高斯时,LingDG发现算法比Richardson的循环因果发现(CCD)算法输出一组较小的候选SEM。我们证明了由岭DG输出的所有模型都具有相同的观测分布,并且同样简单(即相同的边数)。这意味着,如果没有进一步的假设,任何算法都不能通过仅使用观测数据的岭DG可靠地缩小候选SEMS输出集。然而,我们表明,在附加的稳定性假设下,LingDg输出的候选模型集可以进一步缩小(在某些条件下,为单个模型)。
课程简介: This talk will start by presenting Shimizu et al's (2006) ICA-based approach (LiNGAM) for discovering acyclic (DAG) linear Structural Equation Models (SEMs) from causally sufficient, continuous-valued observational data. This is remarkable because it determines the direction of every causal arrow when no experimental data is available. Our work generalizes the above. By relaxing the acyclicity constraint, our approach, LiNG-DG, enables the discovery of arbitrary directed graph (DG) linear SEMs. We present various algorithm sketches for causal discovery with LiNG-DG, and show results of simulation for one such algorithm. When the error terms are non-Gaussian, LiNG-DG discovery algorithms output a smaller set of candidate SEMs than Richardson's Cyclic Causal Discovery (CCD) algorithm. We prove that all the models output by LiNG-DG entail the same observational distribution and are equally simple (i.e. same number of edges). This implies that without further assumptions, no algorithm can reliably narrow the set of candidate SEMs output by LiNG-DG using just observational data. However, we show that under the additional assumption of "stability", the set of candidate models output by LiNG-DG can be further narrowed down (under some conditions, to a single model).
关 键 词: 独立分量分析; 算法; 模型; 机械学习
课程来源: 视频讲座网
最后编审: 2020-06-22:chenxin
阅读次数: 53