0


概率分布RKHS嵌入的核选择和可分类性

Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions
课程网址: http://videolectures.net/nips09_sriperumbudur_kcc/  
主讲教师: Bharath K.Sriperumbudur
开课单位: 加州大学
开课时间: 2010-01-19
课程语种: 英语
中文简介:
已提出将概率测度嵌入再生核希尔伯特空间,作为表示和比较概率的一种简单实用的方法。特别是,嵌入之间的距离(最大平均差,或MMD)与分布上的许多经典度量相比具有几个关键优势,即易于计算、快速收敛和有限样本估计的低偏差。嵌入RKHS的一个重要要求是它具有特征性:在这种情况下,两个分布之间的MMD为零,当且仅当分布一致。本研究介绍了MMD的三个新结果。首先,建立了MMD对应于核分类器的最优风险,从而在分布之间的距离与其分类的容易程度之间形成了自然联系。一个重要的结果是,内核必须具有特性,以保证RKHS中分布之间的可分类性。第二,特征核的类别被扩展为包含所有有界的、连续的严格正定核:这些核包括非平移不变核和非紧致域上的核。第三,针对核族提出了MMD的推广,作为一类核(例如具有不同带宽的高斯核)上MMD的上确界。如果大量选择或一类特征核可能是合适的,则该扩展对于获得单个距离度量是必要的。这种推广是合理的,因为它对应于通过最小化相应的核分类器的风险来学习核的问题。证明了广义MMD具有一致的有限样本估计,并在一个同质性测试示例上证明了其性能。
课程简介: Embeddings of probability measures into reproducing kernel Hilbert spaces have been proposed as a straightforward and practical means of representing and comparing probabilities. In particular, the distance between embeddings (the maximum mean discrepancy, or MMD) has several key advantages over many classical metrics on distributions, namely easy computability, fast convergence and low bias of finite sample estimates. An important requirement of the embedding RKHS is that it be characteristic: in this case, the MMD between two distributions is zero if and only if the distributions coincide. Three new results on the MMD are introduced in the present study. First, it is established that MMD corresponds to the optimal risk of a kernel classifier, thus forming a natural link between the distance between distributions and their ease of classification. An important consequence is that a kernel must be characteristic to guarantee classifiability between distributions in the RKHS. Second, the class of characteristic kernels is broadened to incorporate all bounded, continuous strictly positive definite kernels: these include non-translation invariant kernels and kernels on non-compact domains. Third, a generalization of the MMD is proposed for families of kernels, as the supremum over MMDs on a class of kernels (for instance the Gaussian kernels with different bandwidths). This extension is necessary to obtain a single distance measure if a large selection or class of characteristic kernels is potentially appropriate. This generalization is reasonable, given that it corresponds to the problem of learning the kernel by minimizing the risk of the corresponding kernel classifier. The generalized MMD is shown to have consistent finite sample estimates, and its performance is demonstrated on a homogeneity testing example.
关 键 词: 概率测度; 样本估计; 核分类器
课程来源: 视频讲座网
数据采集: 2023-03-14:chenjy
最后编审: 2023-03-14:chenjy
阅读次数: 26