0


高斯信念传播的轨道 - 乘积表示与校正

Orbit-Product Representation and Correction of Gaussian Belief Propagation
课程网址: http://videolectures.net/icml09_johnson_opr/  
主讲教师: Jason K. Johnson
开课单位: 麻省理工学院
开课时间: 2009-08-26
课程语种: 英语
中文简介:
我们提出了一种新的高斯信念传播(GaBP)视图,它基于行列式的表示作为图形的乘积或位。我们证明了GaBP确定估计捕获了图的完全回溯轨道,并考虑如何纠正这个估计。我们证明了丢失轨道可以被分组为对应于无轨道轨道的等效类,并且可以从GaBP解决方案容易地确定每个等效类的贡献。此外,我们证明这个乘法校正因子可以解释为基于GaBP的边缘权重的图的无障碍邻接矩阵的决定因素。最后,提出了一种有效的方法来计算截断的校正因子,包括直到指定长度的所有后向跟踪轨道。
课程简介: We present a new view of Gaussian belief propagation (GaBP) based on a representa- tion of the determinant as a product over or- bits of a graph. We show that the GaBP determinant estimate captures totally back- tracking orbits of the graph and consider how to correct this estimate. We show that the missing orbits may be grouped into equiva- lence classes corresponding to backtrackless orbits and the contribution of each equiv- alence class is easily determined from the GaBP solution. Furthermore, we demon- strate that this multiplicative correction fac- tor can be interpreted as the determinant of a backtrackless adjacency matrix of the graph with edge weights based on GaBP. Finally, an efficient method is proposed to compute a truncated correction factor including all backtrackless orbits up to a specified length.
关 键 词: 高斯信念传播; 乘法校正因子; 矩阵
课程来源: 视频讲座网
最后编审: 2019-04-23:lxf
阅读次数: 151