支持向量机的优化算法Optimization Algorithms in Support Vector Machines |
|
课程网址: | http://videolectures.net/mlss09us_wright_oasvm/ |
主讲教师: | Stephen J. Wright |
开课单位: | 威斯康星大学 |
开课时间: | 2009-07-30 |
课程语种: | 英语 |
中文简介: | 本讲座介绍了在语音和音频波形环境中进行非平稳性检测的技术,广泛应用于任何一类具有局部静止行为的时间序列。许多这样的波形,特别是携带自然声音信号的信息,表现出一定程度的受控非平稳性,并且通常被很好地建模为缓慢时变系统。该演讲首先描述了这种系统的基本概念以及通过局部傅立叶方法进行的分析。然后通过时变自回归模型引入适合于语音的参数方法,以及基于观察到的随机过程的功率谱密度的时间局部估计的变化的非参数方法,以及基于Wold表示的有效离线自举程序。 。给出了几个真实世界的例子。 |
课程简介: | This talk presents techniques for nonstationarity detection in the context of speech and audio waveforms, with broad application to any class of time series that exhibits locally stationary behavior. Many such waveforms, in particular information-carrying natural sound signals, exhibit a degree of controlled nonstationarity, and are often well modeled as slowly time-varying systems. The talk first describes the basic concepts of such systems and their analysis via local Fourier methods. Parametric approaches appropriate for speech are then introduced by way of time-varying autoregressive models, along with nonparametric approaches based on variation of time-localized estimates of the power spectral density of an observed random process, along with an efficient offline bootstrap procedure based on the Wold representation. Several real-world examples are given. |
关 键 词: | 音频波形环境; 非平稳性检测; 非参数方法 |
课程来源: | 视频讲座网 |
最后编审: | 2020-07-14:yumf |
阅读次数: | 38 |