类关联规则的总体覆盖率如何影响分类器的准确性?How overall coverage of class association rules affects the accuracy of the classifier? |
|
课程网址: | http://videolectures.net/sikdd2019_mattiev_class_association/ |
主讲教师: | Jamolbek Mattiev |
开课单位: | 普里莫尔斯卡大学数学、自然科学和信息技术学院 |
开课时间: | 2019-11-14 |
课程语种: | 英语 |
中文简介: | 关联分类(AC)是一种数据挖掘方法,它结合了分类和关联规则挖掘来构建分类模型(分类器)。实验结果表明,平均而言,基于CBA的方法比一些传统的分类方法能够获得更高的精度。本文主要研究关联分类,生成并分析类关联规则,构建一个简单、紧凑、易于理解且相对准确的分类器。此外,我们还讨论了此类分类器的总体覆盖率和平均规则覆盖率如何影响其分类精度。我们将使用约束穷举搜索的方法与一些“经典”分类规则学习算法进行了比较,这些算法在一些“现实”数据集中使用贪婪启发式搜索来提高精度。我们对UCI机器学习数据库存储库中的11个数据集进行了实验。实验评估表明,随着总体覆盖率的降低,我们提出的方法往往比“经典”分类规则学习算法的分类精度稍差。否则,准确度与Naive Bayes和C4.5相似或在某些数据集上甚至更好。另一方面,我们提出的方法的平均规则覆盖率似乎对分类准确度没有影响。 |
课程简介: | Associative classification (AC) is a data mining approach that combines classification and association rule mining to build classification models (classifiers). Experimental results show that in average the CBA-based approaches could achieve higher accuracy than some of the traditional classification methods. In this paper, we focus on associative classification, where class association rules are generated and analyzed to build a simple, compact, understandable and relatively accurate classifier. Furthermore, we discuss how overall coverage and average rule coverage of such classifiers affect their classification accuracy. We compare our method that uses constrained exhaustive search with some “classical” classification rule learning algorithm that uses greedy heuristic search on accuracy in some “real-life” datasets. We have performed experiments on 11 datasets from UCI Machine Learning Database Repository. Experimental evaluation shows that with decreasing overall coverage our proposed method tends to get slightly worse classification accuracy than the “classical” classification rule learning algorithms. Otherwise, the accuracy is similar or on some datasets even better than Naive Bayes and C4.5. On the other hand, the average rule coverage of our proposed method seems to have no effect on classification accuracy. |
关 键 词: | 普里莫尔斯卡大学; 数据挖掘; 自然科学和信息技术学院 |
课程来源: | 视频讲座网 |
数据采集: | 2022-09-14:cyh |
最后编审: | 2022-09-19:cyh |
阅读次数: | 36 |