首页 → 计算机科学技术基础学科
计算机视觉的机器学习与核方法Machine learning and kernel methods for computer vision |
|
| 课程网址: | http://videolectures.net/etvc08_bach_mlakm/ |
| 主讲教师: | Francis R. Bach |
| 开课单位: | INRIA研究机构 |
| 开课时间: | 2008-12-05 |
| 课程语种: | 英语 |
| 中文简介: | 核方法是机器学习的一个新的理论和算法框架。通过定义良好的点产品 (称为内核) 表示数据, 它们允许对非线性设置和非矢量数据使用经典的线性监督机器学习算法。将这些方法应用于图像处理或计算机视觉时的一个主要问题是内核的选择。我将介绍考虑到图像自然结构的图像内核设计的最新进展。 |
| 课程简介: | Kernel methods are a new theoretical and algorithmic framework for machine learning. By representing data through well defined dot-products, referred to as kernels, they allow to use classical linear supervised machine learning algorithms to non linear settings and to non vectorial data. A major issue when applying these methods to image processing or computer vision is the choice of the kernel. I will present recent advances in the design of kernels for images that take into account the natural structure of images. |
| 关 键 词: | 机器学习; 核方法; 计算机科学; 计算机视觉 |
| 课程来源: | 视频讲座网 |
| 最后编审: | 2020-07-29:yumf |
| 阅读次数: | 81 |
