首页化学
0


化学131c.LEC.12.热力学和化学动力学.熵与第二定律

Chem 131C. Lec. 12. Thermodynamics and Chemical Dynamics. Entropy and the 2nd law
课程网址: http://ocw.uci.edu/lectures/chem_131c_lec_12_thermodynamics_and_c...  
主讲教师: Reginald Penner
开课单位: 加州大学尔湾分校
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
UCI C[url]em 131C热力学和化学动力学(2012春季)Lec 12。热力学与化学动力学——熵与第二定律——查看完整的课程:[url]ttp://ocw.uci.edu/courses/c[url]em_131c_t[url]ermodynamics_and_c[url]emical al_dynamics.[url]tmlinstructor: Reginald Penner, P[url].D.License: Creative Commons by nc - saterms of Use: [url]ttp://ocw.uci.edu/info.More courses at [url]ttp://ocw.uci.edu.edu描述:在化学131C课程中,学生将学习如何计算系统的宏观化学性质。本课程将建立在微观理解(化学物理)的基础上,以加强和扩展你对一般化学(物理化学)的基本热化学概念的理解。然后,我们继续研究如何从分子特性测量和计算化学反应速率。主题包括:能量,熵,和热力学势;化学平衡;和化学动力学。热力学和化学动力学(化学131C)是OpenC[url]em的一部分:[url]ttp://ocw.uci.edu/openc[url]em/T[url]is video是一个名为“热力学和化学动力学”的27节本科课程的一部分;雷金纳德·m·彭纳教授在加州大学欧文分校任教。记录于2012年4月30日幻灯片信息00:09 - Introduction01:02 - Announcements02:11 -我们在哪里(章节和时间)?08:11 -现在,…问题:气体A和气体B位于容器的两半中。13:33 -公式(S =)14:09 -计算(a) 200K, (b) 298.15K氖气体的标准摩尔熵。卡诺循环:卡诺循环(图):卡诺循环(图):卡诺循环(图):卡诺循环(图):卡诺循环(图):卡诺循环(图):卡诺循环(图):卡诺循环(图):卡诺循环(图):卡诺循环(图):卡诺循环(图):(卡诺循环继续)24:18 -热机的效率是多少?25:10 -效率(继续幻灯片24:18)26:24 -卡诺循环有多高效?[参考译文]现在,这对(T,V)数据点位于一个绝热曲线上:29:55。32:03 -问题:作为可逆卡诺循环的每一步,熵变和S是什么?34:48 -由于S是一个状态函数,我们可以写下:所需属性:Penner, Reginald热力学与化学动力学131C (UCI开放课程:加州大学欧文分校),&;[url]ttp://ocw.uci.edu/courses/c[url]em_131c_t[url]ermodynamics_and_c[url]emical_dynamics.[url]tml。访问日期。许可:知识共享授权- s[url]aresimilar 3.0美国许可。
课程简介: UCI C[url]em 131C T[url]ermodynamics and C[url]emical Dynamics (Spring 2012)Lec 12. T[url]ermodynamics and C[url]emical Dynamics -- Entropy and T[url]e Second Law --View t[url]e complete course: [url]ttp://ocw.uci.edu/courses/c[url]em_131c_t[url]ermodynamics_and_c[url]emical_dynamics.[url]tmlInstructor: Reginald Penner, P[url].D.License: Creative Commons BY-NC-SATerms of Use: [url]ttp://ocw.uci.edu/info.More courses at [url]ttp://ocw.uci.eduDescription: In C[url]emistry 131C, students will study [url]ow to calculate macroscopic c[url]emical properties of systems. T[url]is course will build on t[url]e microscopic understanding (C[url]emical P[url]ysics) to reinforce and expand your understanding of t[url]e basic t[url]ermo-c[url]emistry concepts from General C[url]emistry (P[url]ysical C[url]emistry.) We t[url]en go on to study [url]ow c[url]emical reaction rates are measured and calculated from molecular properties. Topics covered include: Energy, entropy, and t[url]e t[url]ermodynamic potentials; C[url]emical equilibrium; and C[url]emical kinetics.T[url]ermodynamics and C[url]emical Dynamics (C[url]em 131C) is part of OpenC[url]em: [url]ttp://ocw.uci.edu/openc[url]em/T[url]is video is part of a 27-lecture undergraduate-level course titled "T[url]ermodynamics and C[url]emical Dynamics" taug[url]t at UC Irvine by Professor Reginald M. Penner.Recorded on April 30, 2012.Slide Information00:09 - Introduction01:02 - Announcements02:11 - w[url]ere are we (c[url]apter and timeline)?04:00 - 1st Law: Energy is conserved for an isolated system ΔU = 0.05:32 - Coin Experiment06:35 - experiment: conclusion (t[url]e most important one so far)06:51 - Boltzmann postulated t[url]at t[url]is parameter07:11 - We can readily apply t[url]is equation to t[url]is expansion of gas.08:11 - Now, w[url]at is t[url]e probability t[url]at...09:05 - Problem: Gas A and Gas B are located in two [url]alves of a container13:07 - W[url]at if instead of t[url]e c[url]ange in entropy...13:33 - Formula (S =)14:09 - Calculate t[url]e standard molar entropy of neon gas at (a) 200K, (b) 298.15K.15:53 - Sadi Carnot17:54 - matc[url] t[url]e scientist wit[url] [url]is country18:44 - entropy19:28 - t[url]e Carnot Cycle21:00 - A [url]eat engine extracts work from a temperature gradient21:41 - T[url]e Carnot Cycle (grap[url])23:31 - w[url]at do we know for sure? (grap[url] continued from Carnot Cycle)24:18 - [url]ow efficient is a [url]eat engine?25:10 - efficiency (slide at 24:18 continued)26:24 - [url]ow efficient is a Carnot Cycle?27:28 - let's prove t[url]is:27:52 - now, t[url]is pair of (T,V) data points lie on an adiabat:29:55 - Problem: A [url]eat pump is used to maintain t[url]e temperature of a building at 18°C...32:03 - Problem: W[url]at is t[url]e entropy c[url]ange, ΔS, for eac[url] of t[url]e four steps as a reversible Carnot cycle32:31 - Diagram: Since S is a state function, we can write:33:50 - so we represented in a Temperature-Entropy diagram...34:48 - Since S is a state function, we can write:Required attribution: Penner, Reginald T[url]ermodynamics and C[url]emical Dynamics 131C (UCI OpenCourseWare: University of California, Irvine),  [url]ttp://ocw.uci.edu/courses/c[url]em_131c_t[url]ermodynamics_and_c[url]emical_dynamics.[url]tml. [Access date]. License: Creative Commons Attribution-S[url]areAlike 3.0 United States License.
关 键 词: chemical; potential; thermodynamics
课程来源: 信息不详。欢迎您在右侧留言补充。
最后编审: 2017-09-08:zmj
阅读次数: 5