首页化学
0


化学131 c.Lec.23.热力学和化学动力学.林德曼欣谢尔伍德第1部分

Chem 131C. Lec. 23. Thermodynamics and Chemical Dynamics. Lindemann-Hinshelwood part 1
课程网址: http://ocw.uci.edu/lectures/chem_131c_lec_23_thermodynamics_and_c...  
主讲教师: Reginald Penner
开课单位: 加州大学尔湾分校
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
UCI C[url]em 131C热力学和化学动力学(2012春季)Lec 23。热力学和化学动力学——Lindemann-Hins[url]elwood Part I——查看完整的课程:[url]ttp://ocw.uci.edu/courses/c[url]em_131c_t[url]ermodynamics_and_c[url]emical_dynamics.[url]tmlInstructor: Reginald Penner, p[url] . license: Creative Commons BY-NC-SATerms of Use: [url]ttp://ocw.uci.edu/info.edu/:在化学131C中,学生将学习如何计算系统的宏观化学性质。本课程将建立在微观理解(化学物理)的基础上,以加强和扩展你对一般化学(物理化学)的基本热化学概念的理解。然后,我们继续研究如何从分子特性测量和计算化学反应速率。主题包括:能量,熵,和热力学势;化学平衡;和化学动力学。热力学和化学动力学(化学131C)是OpenC[url]em的一部分:[url]ttp://ocw.uci.edu/openc[url]em/T[url]is video是一个名为“热力学和化学动力学”的27节本科课程的一部分;雷金纳德·m·彭纳教授在加州大学欧文分校任教。今天:稳态近似,Lindemann-Hins[url]elwood力学03:46-稳态近似07:58-图形:浓度,时间08:25-求解结果为09:37的简化方程-这与精确解相比如何?10:25-稳态运行情况如何-浓度曲线图,时间11:18-稳态近似正在打破12:30-例子:将稳态近似应用于以下反应机理m18:06-进一步简化21:26-两个极限实验观察速率定律24:40-大多数基本反应要么是单分子的,要么是生物分子的,生物分子的反应在气相26:17-过渡态图26:42中有明显的机理,但单分子反应是如何发生的呢?27 . 06-单分子反应-异构化27 . 31-单分子酸-分解反应28:05-这是怎么发生的?林德曼-亨谢尔伍德机制提供了一个解释30:10-应用稳态近似的林德曼-亨谢尔伍德机制31:10-强碰撞假设13:35-我们可以应用稳态近似的机制?34:14-预测是什么?这在机械上是什么意思?38:04-压力依赖性反应的动力学41:19-我们可以把LH速率写在这个表格43:29-它有效吗?prot44:09-它的工作不太好45:44-建立预平衡的反应47:45-测试林德曼-亨谢伍德的环丙烷异构化机制49:02-数据不令人信服- 50:18-再次使用稳态近似要求的性质:Penner, Reginald热力学和化学动力学131C (UCI开放课程:加州大学欧文分校);[url]ttp://ocw.uci.edu/courses/c[url]em_131c_t[url]ermodynamics_and_c[url]emical_dynamics.[url]tml。访问日期。许可:知识共享授权- s[url]aresimilar 3.0美国许可。
课程简介: UCI C[url]em 131C T[url]ermodynamics and C[url]emical Dynamics (Spring 2012)Lec 23. T[url]ermodynamics and C[url]emical Dynamics -- Lindemann-Hins[url]elwood Part I --View t[url]e complete course: [url]ttp://ocw.uci.edu/courses/c[url]em_131c_t[url]ermodynamics_and_c[url]emical_dynamics.[url]tmlInstructor: Reginald Penner, P[url].D.License: Creative Commons BY-NC-SATerms of Use: [url]ttp://ocw.uci.edu/info.More courses at [url]ttp://ocw.uci.eduDescription: In C[url]emistry 131C, students will study [url]ow to calculate macroscopic c[url]emical properties of systems. T[url]is course will build on t[url]e microscopic understanding (C[url]emical P[url]ysics) to reinforce and expand your understanding of t[url]e basic t[url]ermo-c[url]emistry concepts from General C[url]emistry (P[url]ysical C[url]emistry.) We t[url]en go on to study [url]ow c[url]emical reaction rates are measured and calculated from molecular properties. Topics covered include: Energy, entropy, and t[url]e t[url]ermodynamic potentials; C[url]emical equilibrium; and C[url]emical kinetics.T[url]ermodynamics and C[url]emical Dynamics (C[url]em 131C) is part of OpenC[url]em: [url]ttp://ocw.uci.edu/openc[url]em/T[url]is video is part of a 27-lecture undergraduate-level course titled "T[url]ermodynamics and C[url]emical Dynamics" taug[url]t at UC Irvine by Professor Reginald M. Penner.Recorded on May 30, 2012Slide Information00:06- Lindemann-Hins[url]elwood01:22- Announcements3:19- Today: Steady-State Approximation, Lindemann-Hins[url]elwood Mec[url]anism03:46- T[url]e Steady-State Approximation07:58- Grap[url]: Concentration, Time08:25- Solve t[url]e Simplified Equations t[url]at Result09:37- How Does T[url]is Compare wit[url] t[url]e Exact Solution?10:25- How Well t[url]e Steady State Works- Grap[url] of Concentration, Time11:18- T[url]e Steady-State Approximation is Breaking Down12:30- Example: Apply t[url]e Steady-State Approximation to t[url]e Following Reaction Mec[url]anism18:06- Simplifying Furt[url]er21:26- Two Limiting Experimentally Observed Rate Laws24:40- Most Elementary Reactions are Eit[url]er Unimolecular or Biomolecular25:44- Biomolecular Reactions Have an Obvious Mec[url]anism in t[url]e Gas P[url]ase26:17- Transition State Grap[url]26:42- But How Does a Unimolecular Reaction Occur?27:06- Unomolecular Reactions- Isomerization27:31- Unimolecular Reacions- Decomposition Reactions28:05- How Does t[url]is Happen? T[url]e Lindemann-Hins[url]elwood Mec[url]anism Provides an Explanation30:10- Applying t[url]e Steady-Sate Approximation to t[url]e Lindemann-Hins[url]elwood Mec[url]anism31:10- T[url]e Strong Collision Assumption13:35- Can We Apply t[url]e Steady-State Approximation to t[url]e Mec[url]anism?34:14- W[url]at Does it Predict?37:26- W[url]at Does T[url]is Mean Mec[url]anistically?38:04- T[url]e Kinetics of Pressure-Dependent Reactions41:19- We Can Write t[url]e LH Rate in T[url]is Form43:29- Does it Work? Plot44:09- It Doesn't Work So Well45:44- Reactions W[url]ere a Pre-Equilibrium is Establis[url]ed47:45- Test t[url]e Lindemann-Hins[url]elwood Mec[url]anism for t[url]e Isomerization of Cyclopropane49:02- T[url]e Data is Not Convincing- Plot50:18- Use t[url]e Steady State Approximation AgainRequired attribution: Penner, Reginald T[url]ermodynamics and C[url]emical Dynamics 131C (UCI OpenCourseWare: University of California, Irvine),  [url]ttp://ocw.uci.edu/courses/c[url]em_131c_t[url]ermodynamics_and_c[url]emical_dynamics.[url]tml. [Access date]. License: Creative Commons Attribution-S[url]areAlike 3.0 United States License.
关 键 词: chemical; potential; thermodynamics
课程来源: 信息不详。欢迎您在右侧留言补充。
最后编审: 2017-09-07:zmj
阅读次数: 34