开课单位--布里斯托尔大学
1
MINI: Mining Informative Non-redundant Itemsets[迷你:挖掘信息的非冗余项集]
Tijl De Bie(布里斯托尔大学) 迷你:挖掘信息的非冗余项集
热度:29
Tijl De Bie(布里斯托尔大学) 迷你:挖掘信息的非冗余项集
热度:29
2
Bounding the k-family-wise error-rate using resampling methods[使用重新采样方法的k个家庭明智的错误率边界]
Tijl De Bie(布里斯托尔大学)
热度:46
Tijl De Bie(布里斯托尔大学)
热度:46
3
4
Shape constraints and algorithms[形状约束与算法]
Arne Kovac(布里斯托尔大学) We consider several problems in the areas of nonparametric regression and image analysis under shape constraints. The task is always to produce simple...
热度:64
Arne Kovac(布里斯托尔大学) We consider several problems in the areas of nonparametric regression and image analysis under shape constraints. The task is always to produce simple...
热度:64
5
Automating News Content Analysis: An Application to Gender Bias and Readability[自动化新闻内容分析:性别与拜厄斯的可读性]
Omar Ali(布里斯托尔大学) Automating News Content Analysis: An Application to Gender Bias and Readability
热度:39
Omar Ali(布里斯托尔大学) Automating News Content Analysis: An Application to Gender Bias and Readability
热度:39
6
Patterns in sets of points: an overview[模式的点集:概述]
Tijl De Bie(布里斯托尔大学) 1 - "Patterns in sets of points: an overview" "We illustrate the importance of optimization principles in the search for interesting pa...
热度:59
Tijl De Bie(布里斯托尔大学) 1 - "Patterns in sets of points: an overview" "We illustrate the importance of optimization principles in the search for interesting pa...
热度:59
7
8
9
Automating Quantitative Narrative Analysis of News Data [新闻数据的自动化定量叙事分析]
Saatviga Sudhahar(布里斯托尔大学) We present a working system for large scale quantitative narrative analysis (QNA) of news corpora, which includes various recent ideas from text minin...
热度:51
Saatviga Sudhahar(布里斯托尔大学) We present a working system for large scale quantitative narrative analysis (QNA) of news corpora, which includes various recent ideas from text minin...
热度:51
10
Subgroup discovery and rule evaluation in ROC space[roc空间中的子群发现与规则求值]
Peter A. Flach, Nada Lavrač(布里斯托尔大学) Traditionally, machine learning has focussed on induction of classification and prediction rules. More recently, non-predictive or descriptive inducti...
热度:52
Peter A. Flach, Nada Lavrač(布里斯托尔大学) Traditionally, machine learning has focussed on induction of classification and prediction rules. More recently, non-predictive or descriptive inducti...
热度:52