0


气候建模中极端事件的统计降尺度的平滑位数回归分析

Smoothed Quantile Regression for Statistical Downscaling of Extreme Events in Climate Modeling
课程网址: http://videolectures.net/cidu2011_abraham_regression/  
主讲教师: Zubin Abraham
开课单位: 密西根州立大学
开课时间: 2012-06-27
课程语种: 英语
中文简介:
在气候模型中,通常使用统计降尺度,从全球气候模型预测的粗分辨率输出中获得未来气候情景的高分辨率空间预测。不幸的是,大多数使用标准回归方法的统计缩小尺度方法倾向于强调预测数据的条件平均值,而很少关注发生时罕见但对气候影响评估和适应研究至关重要的极端值。本文提出了一个统计降阶框架,该框架通过直接估计响应变量的条件分位数来精确预测未来极值。我们还将所提出的框架扩展到半监督学习环境,并证明其在推断气候极端事件的规模、频率和时间方面的有效性。在评估的37个台站中,就极端数据点的预测量而言,建议的方法在85%的台站中优于基线统计缩小方法。
课程简介: Statistical downscaling is commonly used in climate modeling to obtain high-resolution spatial projections of future climate scenarios from the coarse-resolution outputs projected by global climate models. Unfortunately, most of the statistical downscaling approaches using standard regression methods tend to emphasize projecting the conditional mean of the data while paying scant attention to the extreme values that are rare in occurrence yet critical for climate impact assessment and adaptation studies. This paper presents a statistical downscaling framework that focuses on the accurate projection of future extreme values by estimating directly the conditional quantiles of the response variable. We also extend the proposed framework to a semi-supervised learning setting and demonstrate its efficacy in terms of inferring the magnitude, frequency, and timing of climate extreme events. The proposed approach outperformed baseline statistical down-scaling approaches in 85% of the 37 stations evaluated, in terms of the magnitude projected for extreme data points.
关 键 词: 数据统计; 统计降尺度法; 气候建模
课程来源: 视频讲座网
最后编审: 2019-12-17:lxf
阅读次数: 40