首页机械学
0


用关联规则的预测顺序事件

Sequential Event Prediction with Association Rules
课程网址: http://videolectures.net/colt2011_rudin_prediction/  
主讲教师: Cynthia Rudin
开课单位: 麻省理工学院
开课时间: 2011-08-02
课程语种: 英语
中文简介:
我们考虑一个有监督的学习问题,在这个问题中,数据是按顺序显示的,目标是确定下一步将显示什么。在这个问题的背景下,基于关联规则的算法比经典的统计和机器学习方法具有明显的优势;然而,以前没有使用关联规则来指导监督学习的理论基础。基于统计学习理论中的算法稳定性分析,提出了两种结合关联规则的简单算法,并对这些算法进行了推广保证。我们讨论了关联规则挖掘中经常使用的严格最小支持阈值,并介绍了一个调整后的一致性度量,它提供了一个弱的最小支持条件,该条件比严格的最小支持具有优势。本文从统计学习理论、关联规则挖掘和贝叶斯分析三个方面进行了总结。
课程简介: We consider a supervised learning problem in which data are revealed sequentially and the goal is to determine what will next be revealed. In the context of this problem, algorithms based on association rules have a distinct advantage over classical statistical and machine learning methods; however, there has not previously been a theoretical foundation estab- lished for using association rules in supervised learning. We present two simple algorithms that incorporate association rules, and provide generalization guarantees on these algo- rithms based on algorithmic stability analysis from statistical learning theory. We include a discussion of the strict minimum support threshold often used in association rule mining, and introduce an \adjusted con dence" measure that provides a weaker minimum support condition that has advantages over the strict minimum support. The paper brings together ideas from statistical learning theory, association rule mining and Bayesian analysis.
关 键 词: 机器学习方法; 关联规则; 贝叶斯分析
课程来源: 视频讲座网
最后编审: 2019-12-21:lxf
阅读次数: 46