首页机械学
0


机器学习是棘手的障碍?

Is Intractability a Barrier for Machine Learning?
课程网址: http://videolectures.net/colt2013_arora_barrier/  
主讲教师: Sanjeev Arora
开课单位: 普林斯顿大学
开课时间: 2013-08-09
课程语种: 英语
中文简介:
机器学习理论的一个挫折是许多潜在的算法问题是可证明的难以解决的(例如,NP难解决或更糟),或者假定是难以解决的(例如,Valiant模型中的许多开放问题)。这一谈话将表明,这种看似棘手的问题可能会出现,因为机器学习中使用的许多模型比它们需要的更为普遍。谨慎的重新制定以及考虑新模式的意愿可能会带来进步。我们将使用最近工作中的例子:非负矩阵分解、学习主题模型、带噪声的ICA等。
课程简介: One of the frustrations of machine learning theory is that many of the underlying algorithmic problems are provably intractable (e.g., NP-hard or worse) or presumed to be intractable (e.g., the many open problems in Valiant's model). This talk will suggest that this seeming intractability may arise because many models used in machine learning are more general than they need to be. Careful reformulation as well as willingness to consider new models may allow progress. We will use examples from recent work: Nonnegative matrix factorization, Learning Topic Models, ICA with noise, etc.
关 键 词: 机器理论学习; 非负矩阵分解; 学习主题模型; 带噪声的ICA
课程来源: 视频讲座网
最后编审: 2019-12-21:lxf
阅读次数: 69