学习全成对的光谱分割的亲和力Learning Full Pairwise Affinities for Spectral Segmentation |
|
课程网址: | http://videolectures.net/cvpr2010_hoon_kim_lfpa/ |
主讲教师: | Tae Hoon Kim |
开课单位: | 首尔国立大学 |
开课时间: | 信息不详。欢迎您在右侧留言补充。 |
课程语种: | 英语 |
中文简介: | 本文研究了将局部分组线索结合起来进行光谱分割,得到的一系列成对亲缘关系的学习问题。光谱分割的整体质量主要取决于成对像素的亲合性。利用半监督学习技术,在不迭代的情况下,从测试图像中学习最优的亲合性。我们首先构造一个以像素和区域为节点的多层图,由均值偏移算法生成。通过将半监督学习策略应用于该图,我们可以估计出所有节点对之间的层内和层间亲缘关系。然后使用这些成对的亲合性,在一个标准化切割的单层多层框架中,将所有像素和区域节点同时群集到跨所有层的视觉一致组中。我们的算法通过直接将全范围连接合并到光谱框架中,为目标细节提供高质量的分割。由于全亲和矩阵是由稀疏矩阵的逆矩阵定义的,因此可以有效地计算其特征成分。伯克利和MSRC图像数据库的实验结果表明,与现有的常用方法相比,我们的算法具有相关性和准确性。 |
课程简介: | This paper studies the problem of learning a full range of pairwise affinities gained by integrating local grouping cues for spectral segmentation. The overall quality of the spectral segmentation depends mainly on the pairwise pixel affinities. By employing a semi-supervised learning technique, optimal affinities are learnt from the test image without iteration. We first construct a multi-layer graph with pixels and regions, generated by the mean shift algorithm, as nodes. By applying the semi-supervised learning strategy to this graph, we can estimate the intra- and inter-layer affinities between all pairs of nodes together. These pairwise affinities are then used to simultaneously cluster all pixel and region nodes into visually coherent groups across all layers in a single multi-layer framework of Normalized Cuts. Our algorithm provides high-quality segmentations with object details by directly incorporating the full range connections in the spectral framework. Since the full affinity matrix is defined by the inverse of a sparse matrix, its eigendecomposition is efficiently computed. The experimental results on Berkeley and MSRC image databases demonstrate the relevance and accuracy of our algorithm as compared to existing popular methods. |
关 键 词: | 图像分析; 计算机科学; 计算机视觉 |
课程来源: | 视频讲座网 |
最后编审: | 2019-12-19:cwx |
阅读次数: | 73 |