0


极端事件与方法途径在组织科学的现实意义

On the Relevance of Extremes vs. Means in Organization Science
课程网址: http://videolectures.net/eccs07_andriani_rem/  
主讲教师: Pierpaolo Andriani
开课单位: 杜伦大学
开课时间: 2007-11-21
课程语种: 英语
中文简介:
可伸缩性是复杂性科学的一个关键要素。许多复杂的系统在不同的层次上往往是自相似的,相同的动态在多个层次上工作。它们由比例定律解释。可伸缩性是曼德布洛特所谓的分形几何的结果。花椰菜就是一个明显的例子。分形通常表现为帕累托分布,并由幂律表示。例如,研究人员在企业内部决策、消费者销售、工资、企业规模、电影利润、导演互锁、生物技术网络和工业区中发现了与组织相关的权力法。幂律表示帕累托分布,它表示“肥尾”(近似)无限方差、不稳定均值和不稳定置信区间。帕累托分布与大多数定量组织研究人员不同,他们接受过高斯统计的培训,并接受了大量的培训,以配置他们的数据,以满足线性回归、正态分布和相关统计方法的要求。虽然正态分布和相关的当前定量方法仍然与组织研究的重要部分相关,但幂律意味着帕累托分布、分形和基本的无标度理论越来越普遍和有效地描述组织动力学。如果是真的,研究人员无视权力法会产生得出错误结论的风险,并向从业者传达无用的建议。这是因为对大多数管理者来说重要的是他们面临的极端情况,而不是平均值。然而,对组织科学的影响远远超出了极端事件。工具不存在于理论真空中。采用正态分布统计是一个沉重的假设包袱。对线性、随机性、渐进性和均衡性的依赖影响着理论的建立、合法性的授予以及研究问题的形成。我们从80种幂律的发现入手。然后,我们提出了16种适用于组织的无标度理论。接下来,我们讨论研究的含义。然后,我们讨论了基本预测函数y=f(x)+ε的含义。关于预测、数据、统计和误差项的基本思想是如何改变的?
课程简介: Scalability is a key element of complexity science. Many complex systems tend to be selfsimilar across levels—the same dynamics work at multiple levels. They are explained by scaling laws. Scalability results from what Mandelbrot calls fractal geometry. A cauliflower is an obvious example. Fractals often show Pareto distributions and are signified by power laws. Researchers find organization-related power laws in intrafirm decisions, consumer sales, salaries, size of firms, movie profits, director interlocks, biotech networks, and industrial districts, for example. Power laws signify Pareto distributions, which show “fat tails,” (nearly) infinite variance, unstable means, and unstable confidence intervals. Pareto distributions are alien to most quantitative organizational researchers, who are trained in Gaussian statistics and are trained to go to great lengths to configure their data to fit the requirements of linear regression, normal distributions, and related statistical methods. While normal distributions, and related current quantitative methods are still relevant for a significant portion of organizational research, power laws signify that Pareto distributions, fractals, and underlying scale-free theories are increasingly pervasive and valid characterizations of organizational dynamics. Where true, researchers ignoring power law effects risk drawing false conclusions and promulgating useless advice to practitioners. This because what is important to most managers are the extremes they face, not the averages. The implications for organization science, however, go beyond extreme events. Tools do not exist in a theoretical vacuum. The adoption of normal distribution statistics carries a heavy baggage of assumptions. Reliance on linearity, randomness, gradualism, and equilibrium influences how theories are built, how legitimacy is conferred, and how research questions are formulated. We begin with findings about 80 kinds of power laws. Then, we present sixteen scale-free theories that apply to organizations. Next, we discuss research implications. Then, we discuss implications in terms of the basic predictor function, y = f(x) + ε. How does basic thinking about prediction, data, statistics, and the error term have to change?
关 键 词: 社会经济; 极端事件; 组织科学; 多级别
课程来源: 视频讲座网
最后编审: 2019-12-07:lxf
阅读次数: 71