0


补丁复杂性、 有限像素相关性和最优去噪

Patch Complexity, Finite Pixel Correlations and Optimal Denoising
课程网址: http://videolectures.net/eccv2012_levin_denoising/  
主讲教师: Laurent Itti; Anat Levin; Ramin Zabih
开课单位: 魏茨曼科学研究所
开课时间: 2012-11-12
课程语种: 英语
中文简介:
图像恢复任务是不适定的问题,通常用先验法解决。由于最佳先验是自然图像的精确未知密度,实际先验仅为近似先验,通常仅限于小块。这就提出了几个问题:我们希望在多大程度上利用未来的复杂算法改善当前的恢复结果?更为根本的是,即使拥有对自然图像统计的完美知识,问题的内在模糊性是什么?此外,由于目前大多数方法仅限于有限的支持补丁或内核,自然图像的补丁复杂性、补丁大小和恢复错误之间的关系是什么?针对图像去噪,我们做出了一些贡献。首先,根据计算约束条件,研究了非参数方法中去噪增益与样本大小要求的关系。我们提出了一个收益递减的规律,即随着补丁大小的增加,稀有补丁不仅需要一个更大的数据集,而且从中获益很少。这一结果提出了一种新的自适应变尺寸贴片去噪方案。其次,我们研究了绝对去噪极限,不管使用什么算法,以及作为补丁大小函数的收敛速度。自然图像的尺度不变性在这方面起着关键的作用,它意味着去噪的严格正下界和幂律收敛。通过外推这一参数定律,可以对可实现的最佳去噪进行大致的估计,这表明尽管改进幅度不大,但仍有可能。
课程简介: Image restoration tasks are ill-posed problems, typically solved with priors. Since the optimal prior is the exact unknown density of natural images, actual priors are only approximate and typically restricted to small patches. This raises several questions: How much may we hope to improve current restoration results with future sophisticated algorithms? And more fundamentally, even with perfect knowledge of natural image statistics, what is the inherent ambiguity of the problem? In addition, since most current methods are limited to finite support patches or kernels, what is the relation between the patch complexity of natural images, patch size, and restoration errors? Focusing on image denoising, we make several contributions. First, in light of computational constraints, we study the relation between denoising gain and sample size requirements in a non parametric approach. We present a law of diminishing return, namely that with increasing patch size, rare patches not only require a much larger dataset, but also gain little from it. This result suggests novel adaptive variable-sized patch schemes for denoising. Second, we study absolute denoising limits, regardless of the algorithm used, and the converge rate to them as a function of patch size. Scale invariance of natural images plays a key role here and implies both a strictly positive lower bound on denoising and a power law convergence. Extrapolating this parametric law gives a ballpark estimate of the best achievable denoising, suggesting that some improvement, although modest, is still possible.
关 键 词: 计算机视觉; 图像修复; 图像去燥
课程来源: 视频讲座网
最后编审: 2021-03-12:nkq
阅读次数: 61