0


精确的注释图结构推理和近似支持向量机

Exact and Approximate Inference for Annotating Graphs with Structural SVMs
课程网址: http://videolectures.net/ecmlpkdd08_brefeld_eaai/  
主讲教师: Tobias Scheffer; Ulf Brefeld; Thoralf Klein
开课单位: 吕内堡鲁芬纳大学
开课时间: 2008-10-10
课程语种: 英语
中文简介:
结构支持向量机等结构化预测模型的训练过程涉及对给定参数化模型的最大后验概率(MAP)预测的频繁计算。对于特定的输出结构(如序列或树),可以通过动态编程算法(如维特比算法和CKY解析器)有效地计算地图估计。然而,当输出结构可以是任意图形时,地图估计的精确计算是一个NP完全问题。本文比较了标记图的精确推理和近似推理。从性能和资源需求两个方面研究了精确连接树和近似环信念传播和抽样算法。
课程简介: Training processes of structured prediction models such as structural SVMs involve frequent computations of the maximum-a-posteriori (MAP) prediction given a parameterized model. For specific output structures such as sequences or trees, MAP estimates can be computed efficiently by dynamic programming algorithms such as the Viterbi algorithm and the CKY parser. However, when the output structures can be arbitrary graphs, exact calculation of the MAP estimate is an NP-complete problem. In this paper, we compare exact inference and approximate inference for labeling graphs. We study the exact junction tree and the approximate loopy belief propagation and sampling algorithms in terms of performance and ressource requirements.
关 键 词: 计算机科学; 支持向量机; 参数化模型
课程来源: 视频讲座网
最后编审: 2020-06-29:heyf
阅读次数: 36