异常检测的数据挖掘Data Mining for Anomaly Detection |
|
课程网址: | http://videolectures.net/ecmlpkdd08_lazarevic_dmfa/ |
主讲教师: | Arindam Banerjee; Vipin Kumar; Jaideep Srivastava; Aleksandar Lazarevic; Varun Chandola |
开课单位: | 明尼苏达大学 |
开课时间: | 2008-10-10 |
课程语种: | 英语 |
中文简介: | 异常检测对应于发现通常不符合预期正常行为的事件。这类事件通常被称为异常、异常、异常、偏差、异常、惊喜、特殊性或污染物,在不同的应用领域,异常检测是许多领域的常见问题,如检测欺诈性信用卡交易、保险和税务欺诈检测、网络入侵检测等。安全性、故障检测、直接营销和医疗诊断。尽管从定义上讲,异常很少发生,但在许多例子中,它们的重要性与其他事件相比相当高,这使得它们的检测非常重要。本教程将对异常检测这一日益重要的领域所做的研究进行概述。本教程将从各种角度涵盖现有文献,如输入/输出的性质和监督的可用性。异常将分为三大类:(i)点异常,(i i)上下文异常,和(i i i)结构异常,并将提出适用于每类异常的各种异常检测方法。此外,本教程将讨论几个应用领域,如入侵检测、欺诈检测、工业损害检测、医疗信息学,其中异常检测起着核心作用。 |
课程简介: | Anomaly detection corresponds to discovery of events that typically do not conform to expected normal behavior. Such events are often referred to as anomalies, outliers, exceptions, deviations, aberrations, surprise, peculiarities or contaminants in different application domains Detection of anomalies is a common problem in many domains, such as detecting fraudulent credit card transactions, insurance and tax fraud detection, intrusion detection for cyber security, failure detection, direct marketing, and medical diagnostics. Although anomalies are by definition infrequent, in many examples their importance is quite high compared to other events, making their detection extremely important. This tutorial will provide an overview of the research done in the increasingly important field of anomaly detection. The tutorial will cover the existing literature from a variety of perspectives, such as nature of input/output, and the availability of supervision. Anomalies will be divided into three broad groups: (i) Point anomalies, (ii) Contextual anomalies, and (iii) Structural anomalies, and a wide variety of anomaly detection methods appropriate for each type of anomaly will be presented. Additionally, the tutorial will discuss several application domains, such as intrusion detection, fraud detection, industrial damage detection, healthcare informatics, where anomaly detection plays a central role. |
关 键 词: | 计算机科学; 数据挖掘; 网络安全 |
课程来源: | 视频讲座网 |
最后编审: | 2021-02-28:nkq |
阅读次数: | 55 |