0


关系状态描述的序列的简单模型

A Simple Model for Sequences of Relational State Descriptions
课程网址: http://videolectures.net/ecmlpkdd08_thon_asmf/  
主讲教师: Ingo Thon; Niels Landwehr; Luc De Raedt
开课单位: 鲁汶大学
开课时间: 2008-10-10
课程语种: 英语
中文简介:
人工智能旨在开发在复杂环境中学习和行动的智能体。现实环境通常具有数量可变的对象、它们之间的关系以及不确定的转换行为。标准概率序列模型提供了有效的推理和学习技术,但通常不能完全捕获关系的复杂性。另一方面,统计关系学习技术往往效率太低。在本文中,我们提出了一个简单的模型,在这种表达性/效率权衡中占据中间位置。它以CP逻辑为基础,是一种用于因果关系建模的表达概率逻辑。然而,通过专门化CP逻辑来表示关系状态描述序列上的概率分布,并采用马尔可夫假设,推理和学习变得更加容易和有效。我们证明了所得到的模型能够处理具有大量对象和关系的概率关系域。
课程简介: Artificial intelligence aims at developing agents that learn and act in complex environments. Realistic environments typically feature a variable number of objects, relations amongst them, and non-deterministic transition behavior. Standard probabilistic sequence models provide efficient inference and learning techniques, but typically cannot fully capture the relational complexity. On the other hand, statistical relational learning techniques are often too inefficient. In this paper, we present a simple model that occupies an intermediate position in this expressiveness/efficiency trade-off. It is based on CP-logic, an expressive probabilistic logic for modeling causality. However, by specializing CP-logic to represent a probability distribution over sequences of relational state descriptions, and employing a Markov assumption, inference and learning become more tractable and effective. We show that the resulting model is able to handle probabilistic relational domains with a substantial number of objects and relations.
关 键 词: 序列模型; 人工智能; 概率分布; 建模
课程来源: 视频讲座网
最后编审: 2021-02-04:nkq
阅读次数: 53