0


演进数据流的自适应XML树分类

Adaptive XML Tree Classification on Evolving Data Streams
课程网址: http://videolectures.net/ecmlpkdd09_gavalda_axmltceds/  
主讲教师: Ricard Gavalda
开课单位: 加泰罗尼亚技术大学
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
我们提出了一种新的模式分类方法,以闭合和最大频繁模式为特征。一般来说,分类需要以前从模式映射到特征向量,而频繁的模式在过去被用作特征。封闭模式使用较少的空间保持与频繁模式相同的信息,最大模式保持近似信息。我们使用它们来减少分类特征的数量。我们提出了一个新的XML树流分类框架。对于分类框架的第一个组件,我们使用闭树挖掘算法来进化数据流。对于第二个组件,我们使用最先进的数据流分类方法。据我们所知,这是第一个关于随时间变化的流数据树分类的工作。对所提出的分类方法进行了初步的实验评价。
课程简介: We propose a new method to classify patterns, using closed and maximal frequent patterns as features. Generally, classification requires a previous mapping from the patterns to classify to vectors of features, and frequent patterns have been used as features in the past. Closed patterns maintain the same information as frequent patterns using less space and maximal patterns maintain approximate information. We use them to reduce the number of classification features. We present a new framework for XML tree stream classification. For the first component of our classification framework, we use closed tree mining algorithms for evolving data streams. For the second component, we use state of the art classification methods for data streams. To the best of our knowledge this is the first work on tree classification in streaming data varying with time. We give a first experimental evaluation of the proposed classification method.
关 键 词: 模式识别; 数据流; XML树分类
课程来源: 视频讲座网
最后编审: 2019-12-05:cwx
阅读次数: 51