线性规整化模型的转让学习的特征选择Feature Selection by Transfer Learning with Linear Regularized Models |
|
课程网址: | http://videolectures.net/ecmlpkdd09_helleputte_fstllrm/ |
主讲教师: | Thibault Helleputte |
开课单位: | 鲁汶天主教大学 |
开课时间: | 2009-10-20 |
课程语种: | 英语 |
中文简介: | 本文提出了一种新的高维数据分类特征选择方法,如微阵列技术。它包括一个部分的监督,以便在一个新的数据集上顺利地选择一些维度(基因)进行分类。先前在大型微阵列数据库中从类似的数据集中选择要使用的维度,因此在特征级别执行归纳转移学习。该技术依赖于嵌入在正则化线性模型估计中的特征选择方法。该方法的一个实用近似简化为线性支持向量机学习和迭代输入重定。缩放因子取决于从相关数据集中选择的维度。为了优化分类目标,最终的选择可能会在必要时偏离这些选择。对多个微阵列数据集的实验表明,该方法既提高了所选基因表在抽样变异方面的稳定性,又提高了分类性能。 |
课程简介: | This paper presents a novel feature selection method for classification of high dimensional data, such as those produced by microarrays. It includes a partial supervision to smoothly favor the selection of some dimensions (genes) on a new dataset to be classified. The dimensions to be favored are previously selected from similar datasets in large microarray databases, hence performing inductive transfer learning at the feature level. This technique relies on a feature selection method embedded within a regularized linear model estimation. A practical approximation of this technique reduces to linear SVM learning with iterative input rescaling. The scaling factors depend on the selected dimensions from the related datasets. The final selection may depart from those whenever necessary to optimize the classification objective. Experiments on several microarray datasets show that the proposed method both improves the selected gene lists stability, with respect to sampling variation, as well as the classification performances. |
关 键 词: | 特征选择; 线性模型; 微阵列 |
课程来源: | 视频讲座网 |
最后编审: | 2020-09-21:heyf |
阅读次数: | 30 |