首页机械学
0


特征重要性排名测量

The Feature Importance Ranking Measure
课程网址: http://videolectures.net/ecmlpkdd09_kramer_firm/  
主讲教师: Nicole Krämer
开课单位: 柏林工业大学
开课时间: 2009-10-20
课程语种: 英语
中文简介:
最精确的预测通常是由具有复杂特征空间的学习机器(例如由内核诱导)获得的。不幸的是,这样的决策规则很难被人访问,并且不容易被用来获得关于应用程序领域的见解。因此,人们经常采用线性模型与变量选择相结合,从而为假定的可解释性牺牲一些预测能力。在这里,我们介绍了重要的特征排序度量(firm),它通过对任意学习机器的回顾性分析,可以实现出色的预测性能和出色的解释。与标准的原始特征权重相比,企业将特征的底层相关结构考虑在内。因此,它能够发现最相关的特性,即使它们在训练数据中的出现完全被噪声所阻止。对企业的理想性质进行了分析研究,并通过仿真加以说明。
课程简介: Most accurate predictions are typically obtained by learning machines with complex feature spaces (as e.g. induced by kernels). Unfortunately, such decision rules are hardly accessible to humans and cannot easily be used to gain insights about the application domain. Therefore, one often resorts to linear models in combination with variable selection, thereby sacrificing some predictive power for presumptive interpretability. Here, we introduce the Feature Importanc Ranking Measure(FIRM), which by retrospective analysis of arbitrary learning machines allows to achieve both excellent predictive performance and superior interpretation. In contrast to standard raw feature weighting, FIRM takes the underlying correlation structure of the features into account. Thereby, it is able to discover the most relevant features, even if their appearance in the training data is entirely prevented by noise. The desirable properties of FIRM are investigated analytically and illustrated in simulations.
关 键 词: 特征选择; 机器学习; 线性模型
课程来源: 视频讲座网
最后编审: 2021-01-31:nkq
阅读次数: 104