0


标记图的隐私保护半监督学习

Privacy Preserving Semi-Supervised Learning for Labeled Graphs
课程网址: http://videolectures.net/ecmlpkdd2011_arai_graphs/  
主讲教师: Hiromi Arai
开课单位: 筑波大学
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
提出了一种新的保密学习算法,实现了图形的半监督学习。在现实世界的网络中,例如个人的疾病感染,链接(接触)和标签(感染)通常是高度敏感的信息。传统的半监督学习方法虽然在网络数据分析中起着重要的作用,但不能有效地保护这些敏感信息。我们的解决方案可以通过将加密技术结合到标签传播算法中,在不公开标签和链接的情况下预测部分标签图的标签。即使图表中包含的标签是保密的,我们的PPLP的准确性也相当于标签传播的准确性,允许观察图表中的所有标签。实证分析表明,与现有的隐私保护方法相比,该方法具有可扩展性。与人接触网络的结果表明,我们的协议只需要大约10秒的计算时间,并且在协议执行过程中没有透露任何敏感信息。
课程简介: We propose a novel privacy preserving learning algorithm that achieves semi-supervised learning in graphs. In real world networks, such as disease infection over individuals, links (contact) and labels (infection) are often highly sensitive information. Although traditional semisupervised learning methods play an important role in network data analysis, they fail to protect such sensitive information. Our solutions enable to predict labels of partially labeled graphs without disclosure of labels and links, by incorporating cryptographic techniques into the label propagation algorithm. Even when labels included in the graph are kept private, the accuracy of our PPLP is equivalent to that of label propagation which is allowed to observe all labels in the graph. Empirical analysis showed that our solution is scalable compared with existing privacy preserving methods. The results with human contact networks showed that our protocol takes only about 10 seconds for computation and no sensitive information is disclosed through the protocol execution.
关 键 词: 计算机科学; 机器学习; 半监督学习
课程来源: 视频讲座网
最后编审: 2019-12-05:cwx
阅读次数: 43