模式识别的新型融合方法Novel Fusion Methods for Pattern Recognition |
|
课程网址: | http://videolectures.net/ecmlpkdd2011_awais_recognition/ |
主讲教师: | Muhammad Awais |
开课单位: | 萨里大学 |
开课时间: | 信息不详。欢迎您在右侧留言补充。 |
课程语种: | 英语 |
中文简介: | 近年来,人们提出了多种信息融合方法,包括分类器级融合(集成方法)、叠加和多核学习(MKL)的不同变体。MKL已成为目标识别中信息融合的首选方法。然而,在具有高度辨别性和互补性的特征通道的情况下,它并没有显著改善其平均内核的琐碎基线。另一种方法是基于两相方法的堆叠和分类器级融合(CLF)。对于合奏方法的线性规划公式,特别是在二进制分类的情况下,有大量的工作要做。本文提出了一个二进制V-LPBoost的多类扩展,它学习了每个类在每个特征信道中的贡献。现有的分类器融合方法由于基于l1范数的正则化而促进了稀疏特征的组合,导致了特征信道子集的选择,这在信息信道的情况下是不好的。因此,我们将现有的分类器融合公式推广到二进制和多类问题的任意Lp范数,从而更有效地利用互补信息。我们还扩展了二进制和多类数据集的堆栈。我们对四个数据集的融合方法进行了广泛的评估,这些数据集都包含信息丰富的内核,并在所有这些数据集上实现了最先进的结果。 |
课程简介: | e last few years, several approaches have been proposed for information fusion including different variants of classifier level fusion (ensemble methods), stacking and multiple kernel learning (MKL). MKL has become a preferred choice for information fusion in object recognition. However, in the case of highly discriminative and complementary feature channels, it does not significantly improve upon its trivial baseline which averages the kernels. Alternative ways are stacking and classifier level fusion (CLF) which rely on a two phase approach. There is a significant amount of work on linear programming formulations of ensemble methods particularly in the case of binary classification. In this paper we propose a multiclass extension of binary v-LPBoost, which learns the contribution of each class in each feature channel. The existing approaches of classifier fusion promote sparse features combinations, due to regularization based on l1-norm, and lead to a selection of a subset of feature channels, which is not good in the case of informative channels. Therefore, we generalize existing classifier fusion formulations to arbitrary lp-norm for binary and multiclass problems which results in more effective use of complementary information. We also extended stacking for both binary and multiclass datasets. We present an extensive evaluation of the fusion methods on four datasets involving kernels that are all informative and achieve state-of-the-art results on all of them. |
关 键 词: | 机器学习; 模式识别; 内核; 分类器 |
课程来源: | 视频讲座网 |
最后编审: | 2019-12-05:cwx |
阅读次数: | 44 |