0


通过加权多重关系学习社会化媒体系统的建议

Learning Recommendations in Social Media Systems By Weighting Multiple Relations
课程网址: http://videolectures.net/ecmlpkdd2011_chidlovskii_learning/  
主讲教师: Boris Chidlovskii
开课单位: 施乐欧洲研究中心
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
我们解决了社交媒体共享系统中的项目推荐问题。我们采用多关系框架,能够整合社会媒体系统中可用的不同实体类型以及实体之间的关系。然后,我们将不同的推荐任务建模为关系图中的加权随机行走。本文的主要贡献是通过最小化训练数据集上的损失函数来学习每个关系对给定推荐任务的最佳贡献。我们报告了Flickr数据集上两个常见任务的关系权重学习结果、图像的标签建议和用户的联系建议。
课程简介: We address the problem of item recommendation in social media sharing systems. We adopt a multi-relational framework capable to integrate different entity types available in the social media system and relations between the entities. We then model different recommendation tasks as weighted random walks in the relational graph. The main contribution of the paper is a novel method for learning the optimal contribution of each relation to a given recommendation task, by minimizing a loss function on the training dataset. We report results of the relation weight learning for two common tasks on the Flickr dataset, tag recommendation for images and contact recommendation for users.
关 键 词: 计算机科学; 社交媒体; 权重
课程来源: 视频讲座网
最后编审: 2019-12-05:cwx
阅读次数: 35