0


通过矩阵分解的链路预测

Link prediction via matrix factorization
课程网址: http://videolectures.net/ecmlpkdd2011_elkan_factorization/  
主讲教师: Charles Elkan
开课单位: 加州大学圣地亚哥分校
开课时间: 2011-11-30
课程语种: 英语
中文简介:
我们提出用监督矩阵分解方法来解决图中的链路预测问题。该模型从(可能有向)图的拓扑结构中学习潜在特征,并显示出比流行的无监督分数做出更好的预测。我们展示了如何将这些潜在特征与节点或边缘的可选显式特征相结合,这比单独使用任何一种特征都能获得更好的性能。最后,我们提出了一种新的方法来解决类不平衡问题,这是常见的链接预测直接优化排名损失。我们的模型采用随机梯度下降和大图尺度优化。几个数据集的结果显示了我们方法的有效性。
课程简介: We propose to solve the link prediction problem in graphs using a supervised matrix factorization approach. The model learns latent features from the topological structure of a (possibly directed) graph, and is shown to make better predictions than popular unsupervised scores. We show how these latent features may be combined with optional explicit features for nodes or edges, which yields better performance than using either type of feature exclusively. Finally, we propose a novel approach to address the class imbalance problem which is common in link prediction by directly optimizing for a ranking loss. Our model is optimized with stochastic gradient descent and scales to large graphs. Results on several datasets show the efficacy of our approach.
关 键 词: 网络分析; 计算机科学; 机器学习
课程来源: 视频讲座网
最后编审: 2021-02-03:nkq
阅读次数: 77