一种对偶映射线性松弛的交替方向法An Alternating Direction Method for Dual MAP LP Relaxation |
|
课程网址: | http://videolectures.net/ecmlpkdd2011_globerson_alternating/ |
主讲教师: | Amir Globerson |
开课单位: | 耶路撒冷希伯来大学 |
开课时间: | 2011-10-03 |
课程语种: | 英语 |
中文简介: | 最大后验概率(MAP)估计是概率图形模型应用中的一项重要任务。虽然寻找精确解通常是困难的,但是基于线性规划(LP)松弛的近似通常提供了很好的近似解。本文提出了一种求解线性规划松弛优化问题的算法。为了克服严格凸性的不足,我们将增广拉格朗日方法应用于对偶线性规划。该算法基于交替方向乘子法(ADMM),保证收敛到线性规划松弛目标的全局最优。实验结果表明,该算法与其它最先进的近似地图估计算法相比具有较强的竞争力。 |
课程简介: | Maximum a-posteriori (MAP) estimation is an important task in many applications of probabilistic graphical models. Although finding an exact solution is generally intractable, approximations based on linear programming (LP) relaxation often provide good approximate solutions. In this paper we present an algorithm for solving the LP relaxation optimization problem. In order to overcome the lack of strict convexity, we apply an augmented Lagrangian method to the dual LP. The algorithm, based on the alternating direction method of multipliers (ADMM), is guaranteed to converge to the global optimum of the LP relaxation objective. Our experimental results show that this algorithm is competitive with other state-of-the-art algorithms for approximate MAP estimation. |
关 键 词: | 计算机科学; 机器学习; 图形模型 |
课程来源: | 视频讲座网 |
最后编审: | 2021-02-16:nkq |
阅读次数: | 38 |