复杂系统中的波动尺度:泰勒定律与超越Fluctuation scaling in complex systems: Taylor's law and beyond |
|
课程网址: | http://videolectures.net/ephdcs08_kertesz_fsics/ |
主讲教师: | János Kertész |
开课单位: | 布达佩斯科技经济大学 |
开课时间: | 2008-10-15 |
课程语种: | 英语 |
中文简介: | 复杂系统由许多相互作用的元素组成,这些元素参与某些动态过程。各种元素的活动常常是不同的,一个元素活动的波动随着平均活动单调地增长。这种关系通常是波动的形式≈const.\times average^α,其中指数α主要在范围[1/2,1]内。这种幂律在很多学科中都有应用,从互联网上的人口动态到股票市场,它通常被称为泰勒定律或波动尺度。我们试图通过调查文献以及报告一些新的经验数据和模型计算来说明上述比例关系的一般性。我们还展示了一些基本原则,这些原则可以作为现象普遍性的基础。 |
课程简介: | Complex systems consist of many interacting elements which participate in some dynamical process. The activity of various elements is often different and the fluctuation in the activity of an element grows monotonically with the average activity. This relationship is generically of the form fluctuations ≈ const.\times average^α, where the exponent α is predominantly in the range [1/2, 1]. This power law has been observed in a very wide range of disciplines, ranging from population dynamics through the Internet to the stock market and it is often treated under the names Taylor's law or fluctuation scaling. We attempt to show how general the above scaling relationship is by surveying the literature, as well as by reporting some new empirical data and model calculations. We also show some basic principles that can underlie the generality of the phenomenon. |
关 键 词: | 复杂系统; 经验数据; 模型计算 |
课程来源: | 视频讲座网 |
最后编审: | 2020-09-21:heyf |
阅读次数: | 65 |