SIM-DL_A:一种新的用于减少概念间实例相似度描述逻辑的语义相似度度量方法SIM-DL_A: A Novel Semantic Similarity Measure for Description Logics Reducing Inter-Concept to Inter-Instance Similarity |
|
课程网址: | http://videolectures.net/eswc09_janowicz_sdaanss/ |
主讲教师: | Krzysztof Janowicz |
开课单位: | 明斯特大学 |
开课时间: | 2009-07-28 |
课程语种: | 英语 |
中文简介: | 语义相似度在人类分类和推理中起着至关重要的作用,而计算相似度也被应用于基于语义的信息检索或本体工程等领域。为了比较各种描述逻辑中指定的概念,开发了几种度量方法。在大多数情况下,这些度量要么是结构化的,要么需要填充的本体。结构度量随着所用描述逻辑的表达能力的增加而失败,而一些本体(例如地理特征类型本体)根本不填充。本文提出了一种将概念间相似度降为实例间相似度的方法,从而避免了结构测度的规范化问题。这种称为sim-dl_a的新方法重新利用了以前的sim-dl度量中存在的相似函数,如共现函数或网络度量。比较所需的实例来自于用于满足性检查的略微修改的dl tableau算法的完成树。Tableau算法不是试图找到一个(无冲突)模型,而是生成一组用于比较的代理个体。文中给出了算法、对齐矩阵和相似函数,并给出了具体的算例。 |
课程简介: | While semantic similarity plays a crucial role for human categorization and reasoning, computational similarity measures have also been applied to fields such as semantics-based information retrieval or ontology engineering. Several measures have been developed to compare concepts specified in various description logics. In most cases, these measures are either structural or require a populated ontology. Structural measures fail with an increasing expressivity of the used description logic, while several ontologies, e.g., geographic feature type ontologies, are not populated at all. In this paper, we present an approach to reduce inter-concept to inter-instance similarity and thereby avoid the canonization problem of structural measures. The novel approach, called SIM-DL_A, reuses existing similarity functions such as co-occurrence or network measures from our previous SIM-DL measure. The required instances for comparison are derived from the completion tree of a slightly modified DL-tableau algorithm as used for satisfiability checking. Instead of trying to find one (clash-free) model, the tableau algorithm generates a set of proxy individuals used for comparison. The paper presents the algorithm, alignment matrix, and similarity functions as well as a detailed example. |
关 键 词: | 语义相似性; 信息检索; 本体工程; 描述逻辑 |
课程来源: | 视频讲座网 |
最后编审: | 2019-11-28:lxf |
阅读次数: | 46 |