0


基于图的聚类算法性能评估

Assessing the Performance of a Graph-based Clustering Algorithm
课程网址: http://videolectures.net/gbr07_foggia_atp/  
主讲教师: Pasquale Foggia
开课单位: 那不勒斯大学
开课时间: 2007-07-12
课程语种: 英语
中文简介:
基于图的聚类算法特别适用于处理非高斯分布或球面分布的数据。它们可以用于检测任何大小和形状的集群,而无需指定集群的实际数量;而且,它们还可以用于集群检测问题。本文对四种不同的基于图的聚类方法进行了详细的性能评价。从文献中选择了三种用于比较的算法。虽然这些算法不需要设置集群数量,但是它们需要用户提供一些参数。因此,作为比较的第四种算法,本文提出了一种克服这一局限性的方法,证明在实际应用中是一种有效的解决方案,需要一种完全无监督的方法。
课程简介: Graph-based clustering algorithms are particularly suited for dealing with data that do not come from a Gaussian or a spherical distribution. They can be used for detecting clusters of any size and shape without the need of specifying the actual number of clusters; moreover, they can be profitably used in cluster detection problems. In this paper, we propose a detailed performance evaluation of four different graph-based clustering approaches. Three of the algorithms selected for comparison have been chosen from the literature. While these algorithms do not require the setting of the number of clusters, they need, however, some parameters to be provided by the user. So, as the fourth algorithm under comparison, we propose in this paper an approach that overcomes this limitation, proving to be an effective solution in real applications where a completely unsupervised method is desirable.
关 键 词: 计算机科学; 机器学习; 聚类
课程来源: 视频讲座网
最后编审: 2019-12-04:lxf
阅读次数: 57