0


基于回归的姿态估计与自动闭塞检测和纠正

Regression Based Pose Estimation with Automatic Occlusion Detection and Rectification
课程网址: http://videolectures.net/icme2012_radwan_pose_estimation/  
主讲教师: Ibrahim Ismail Radwan
开课单位: 堪培拉大学
开课时间: 2012-09-18
课程语种: 英语
中文简介:
人体姿态估计是计算机视觉中的一个经典问题。基于局部建模和图形结构框架的统计模型在关节式人体姿态估计中得到了广泛的应用。然而,由于存在自遮挡,这些模型的性能受到限制。本文提出了一种基于学习的自动检测和恢复自我封闭身体部位的框架。我们学习了两种不同的模型:一种用于检测上半身的闭塞部分,另一种用于下半身。为了解决了解被遮挡部位的关键问题,我们构建了高斯过程回归(gpr)模型,从被遮挡部位对应的地面真值参数中学习被遮挡部位的参数。利用这些模型,可以自动校正未看到图像中被遮挡部分的图像结构。该框架优于目前最先进的人体姿势估计图形结构方法。
课程简介: Human pose estimation is a classic problem in computer vision. Statistical models based on part-based modelling and the pictorial structure framework have been widely used recently for articulated human pose estimation. However, the performance of these models has been limited due to the presence of self-occlusion. This paper presents a learning-based framework to automatically detect and recover self-occluded body parts. We learn two different models: one for detecting occluded parts in the upper body and another one for the lower body. To solve the key problem of knowing which parts are occluded, we construct Gaussian Process Regression (GPR) models to learn the parameters of the occluded body parts from their corresponding ground truth parameters. Using these models, the pictorial structure of the occluded parts in unseen images is automatically rectified. The proposed framework outperforms a state-of-the-art pictorial structure approach for human pose estimation on 3 different datasets.
关 键 词: 多媒体; 计算机科学; 计算机视觉
课程来源: 视频讲座网
最后编审: 2020-06-15:heyf
阅读次数: 25