切换自回归过程的非参数学习Nonparametric Learning of Switching Autoregressive Processes |
|
课程网址: | http://videolectures.net/icml08_fox_nls/ |
主讲教师: | Emily Fox |
开课单位: | 华盛顿大学 |
开课时间: | 2008-08-04 |
课程语种: | 英语 |
中文简介: | 向量自回归(var)过程在描述各种各样的动态现象时非常有用,如语音、金融时间序列和蜜蜂的舞蹈。然而,这种现象经常表现出结构随时间的变化,描述它们的VaR也必须变化。例如,发言者的声带收缩了;一个国家经历了经济衰退、中央银行干预或一些国家或全球事件;蜜蜂从摇摆舞变为右转舞。其中一些变化将频繁出现,而其他变化则很少被观察到。在广告中,总是有可能出现以前看不见的动态行为。因此,我们提出了一种非参数化的学习切换变量过程的方法,其中我们将状态序列作为马尔可夫过程。 |
课程简介: | Vector autoregressive (VAR) processes are useful in describing dynamical phenomena as diverse as speech, financial time-series, and the dancing of honey bees. However, such phenomena often exhibit structural changes over time and the VAR which describe them must also change. For example, the vocal tract of a speaker contracts; a country experiences a recession, a central bank intervention, or some national or global event; a honey bee changes from a waggle to a turn right dance. Some of these changes will appear fre- quently, while others are only rarely observed. In ad- dition, there is always the possibility of a previously unseen dynamic behavior. Thus, we propose a non- parametric approach for learning switching VAR pro- cesses, where we take the state sequence to be Markov.... |
关 键 词: | 向量自回归; 工艺参数; 状态序列; 马尔可夫 |
课程来源: | 视频讲座网 |
最后编审: | 2019-12-04:lxf |
阅读次数: | 47 |