0


神经刺激政策基于强化学习模型的流形嵌入

Manifold Embeddings for Model-Based Reinforcement Learning of Neurostimulation Policies
课程网址: http://videolectures.net/icml09_bush_membrlnp/  
主讲教师: Keith Bush
开课单位: 阿利坎特大学
开课时间: 2009-08-26
课程语种: 英语
中文简介:
现实世界中的强化学习问题往往表现出非线性、连续值、噪声、部分可观测的状态空间,这些状态空间的探索成本极高。不幸的是,正式的强化学习框架并没有在一个具有所有这些约束的现实世界中得到成功的证明。我们用一个由两部分组成的解决方案来处理这个领域。首先,我们通过构造系统底层动力学的流形嵌入来克服连续值的、部分可观测的状态空间,将其替换为完整的状态空间表示。然后,我们在这个流形上定义一个生成模型来离线学习策略。基于模型的方法是首选的,因为它可以通过领域知识简化学习问题。在这项工作中,我们正式地将流形嵌入到强化学习框架中,总结出一种估计嵌入参数的谱方法,并在癫痫神经系统的复杂域自适应癫痫抑制中演示了基于模型的方法。
课程简介: Real-world reinforcement learning problems often exhibit nonlinear, continuous-valued, noisy, partially-observable state-spaces that are prohibitively expensive to explore. The formal reinforcement learning framework, unfortunately, has not been successfully demonstrated in a real-world domain having all of these constraints. We approach this domain with a two-part solution. First, we overcome continuous-valued, partially observable state-spaces by constructing manifold embeddings of the system’s underlying dynamics, which substitute as a complete state-space representation. We then define a generative model over this manifold to learn a policy off-line. The model-based approach is preferred because it enables simplification of the learning problem by domain knowledge. In this work we formally integrate manifold embeddings into the reinforcement learning framework, summarize a spectral method for estimating embedding parameters, and demonstrate the model-based approach in a complex domain-adaptive seizure suppression of an epileptic neural system.
关 键 词: 强化学习; 流形嵌入; 神经系统
课程来源: 视频讲座网
最后编审: 2019-12-07:lxf
阅读次数: 65