社会互动中的疾病传播Modeling Spread of Disease from Social Interactions |
|
课程网址: | http://videolectures.net/icwsm2012_sadilek_interacions/ |
主讲教师: | Adam Sadilek |
开课单位: | 罗切斯特大学 |
开课时间: | 信息不详。欢迎您在右侧留言补充。 |
课程语种: | 英语 |
中文简介: | 迄今为止,计算流行病学的研究主要集中在对人群的粗粒度统计分析上,通常是合成人群。相比之下,本文主要研究传染病在一个大型现实社会网络中传播的细粒度模型。具体来说,我们研究社会关系和特定个体之间的互动在传染过程中所扮演的角色。我们关注的是公共Twitter数据,我们发现每一条与健康相关的信息都有1000多条不相关的信息。这种阶级不平衡使得分类特别具有挑战性。尽管如此,我们提出了一个框架,可以从在线交流的内容中准确地识别出患病者。对250万条贴地理标签的Twitter信息样本的评估显示,与感染者、有症状的人的社会关系以及最近的共同定位的强度,在不久的将来大幅增加了感染该疾病的可能性。据我们所知,这项工作是第一个模拟社会活动、人类流动和传染病在大量现实世界人口中传播的相互作用。此外,我们在没有积极用户参与的情况下,对疾病大规模传播的特征进行了第一次可量化的估计,这是我们从日常人际交往中建模和预测全球流行病出现的能力的一步。 |
课程简介: | Research in computational epidemiology to date has concentrated on coarse-grained statistical analysis of populations, often synthetic ones. By contrast, this paper focuses on fine-grained modeling of the spread of infectious diseases throughout a large real-world social network. Specifically, we study the roles that social ties and interactions between specific individuals play in the progress of a contagion. We focus on public Twitter data, where we find that for every health-related message there are more than 1,000 unrelated ones. This class imbalance makes classification particularly challenging. Nonetheless, we present a framework that accurately identifies sick individuals from the content of online communication. Evaluation on a sample of 2.5 million geo-tagged Twitter messages shows that social ties to infected, symptomatic people, as well as the intensity of recent co-location, sharply increase one's likelihood of contracting the illness in the near future. To our knowledge, this work is the first to model the interplay of social activity, human mobility, and the spread of infectious disease in a large real-world population. Furthermore, we provide the first quantifiable estimates of the characteristics of disease transmission on a large scale without active user participation---a step towards our ability to model and predict the emergence of global epidemics from day-to-day interpersonal interactions. |
关 键 词: | 流行病学; 粗粒度统计; 传染病传播; 公共推特 |
课程来源: | 视频讲座网 |
最后编审: | 2019-12-12:cwx |
阅读次数: | 46 |