0


严格定性影响的贝叶斯网络的参数学习

Parameter Learning for Bayesian Networks with Strict Qualitative Influences
课程网址: http://videolectures.net/ida07_feelders_plfbn/  
主讲教师: Ad Feelders
开课单位: 荷兰乌得勒支大学
开课时间: 2007-10-08
课程语种: 英语
中文简介:
提出了一种新的定性影响贝叶斯网络参数学习方法。该方法的目的是消除由序约束最大似然估计(OCML)产生的不需要的(上下文特定的)独立性。这是通过用一阶逻辑回归模型的拟合概率平均OCML估计量来实现的。实验结果表明,新的学习算法的性能不比OCML差,并且解决了大部分的独立性问题。
课程简介: We propose a new method for learning the parameters of a Bayesian network with qualitative influences. The proposed method aims to remove unwanted (context-specific) independencies that are created by the order-constrained maximum likelihood (OCML) estimator. This is achieved by averaging the OCML estimator with the fitted probabilities of a first-order logistic regression model. We show experimentally that the new learning algorithm does not perform worse than OCML, and resolves a large part of the independencies.
关 键 词: 贝叶斯网络; 最大似然估计; 平均信号估计; 拟合概率
课程来源: 视频讲座网
最后编审: 2019-12-20:lxf
阅读次数: 45