首页 → 应用数学
首页 → 计算数学
首页 → 概率论
首页 → 计算数学
首页 → 概率论
严格定性影响的贝叶斯网络的参数学习Parameter Learning for Bayesian Networks with Strict Qualitative Influences |
|
| 课程网址: | http://videolectures.net/ida07_feelders_plfbn/ |
| 主讲教师: | Ad Feelders |
| 开课单位: | 荷兰乌得勒支大学 |
| 开课时间: | 2007-10-08 |
| 课程语种: | 英语 |
| 中文简介: | 提出了一种新的定性影响贝叶斯网络参数学习方法。该方法的目的是消除由序约束最大似然估计(OCML)产生的不需要的(上下文特定的)独立性。这是通过用一阶逻辑回归模型的拟合概率平均OCML估计量来实现的。实验结果表明,新的学习算法的性能不比OCML差,并且解决了大部分的独立性问题。 |
| 课程简介: | We propose a new method for learning the parameters of a Bayesian network with qualitative influences. The proposed method aims to remove unwanted (context-specific) independencies that are created by the order-constrained maximum likelihood (OCML) estimator. This is achieved by averaging the OCML estimator with the fitted probabilities of a first-order logistic regression model. We show experimentally that the new learning algorithm does not perform worse than OCML, and resolves a large part of the independencies. |
| 关 键 词: | 贝叶斯网络; 最大似然估计; 平均信号估计; 拟合概率 |
| 课程来源: | 视频讲座网 |
| 最后编审: | 2019-12-20:lxf |
| 阅读次数: | 63 |
