移动电话图:超越幂律和对数正态分布Mobile Call Graphs: Beyond Power-Law and Lognormal Distributions |
|
课程网址: | http://videolectures.net/kdd08_seshadri_mcgbpl/ |
主讲教师: | Mukund Seshadri |
开课单位: | 斯普林特实验室 |
开课时间: | 2008-09-26 |
课程语种: | 英语 |
中文简介: | 我们分析了一个庞大的社交网络,收集了一家大型移动电话运营商的记录,拥有超过一百万的用户和数千万的电话。我们检查每个客户的电话呼叫数量、每个客户的总通话时间以及每个客户的不同呼叫伙伴数量的分布。我们发现这些分布是偏态的,它们与幂律分布和对数正态分布的预期值有很大的偏差。为了分析我们观察到的分布(呼叫数、不同的呼叫伙伴和总通话时间),我们提出了Powertrack,一种适合于我们的数据的更不知名但更合适的分布的方法,即双帕累托对数正态分布(DPLN),并随时间跟踪其参数。使用powertrack,我们发现我们的图随着时间的推移而变化,与生成过程一致,生成过程自然会导致我们观察到的dpln分布。此外,我们还表明,在我们这样的社会网络背景下,这种生成过程有助于自然和吸引人的社会财富解释。我们讨论了这些结果在我们的模型和预测中的应用。 |
课程简介: | We analyze a massive social network, gathered from the records of a large mobile phone operator, with more than a million users and tens of millions of calls. We examine the distributions of the number of phone calls per customer; the total talk minutes per customer; and the distinct number of calling partners per customer. We find that these distributions are skewed, and that they significantly deviate from what would be expected by power-law and lognormal distributions. To analyze our observed distributions (of number of calls, distinct call partners, and total talk time), we propose PowerTrack , a method which fits a lesser known but more suitable distribution, namely the Double Pareto LogNormal (DPLN) distribution, to our data and track its parameters over time. Using PowerTrack , we find that our graph changes over time in a way consistent with a generative process that naturally results in the DPLN distributions we observe. Furthermore, we show that this generative process lends itself to a natural and appealing social wealth interpretation in the context of social networks such as ours. We discuss the application of those results to our model and to forecasting. |
关 键 词: | 社交网络; 对数正态分布; 社会财富解释 |
课程来源: | 视频讲座网 |
最后编审: | 2019-12-04:lxf |
阅读次数: | 36 |