0


一个不断发展的数字图书馆的后悔在线排名

Regret-based Online Ranking for a Growing Digital Library
课程网址: http://videolectures.net/kdd09_delage_rborgdl/  
主讲教师: Erick Delage
开课单位: 斯坦福大学
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
使用排名的最常见环境采用非常具体的形式。用户在数字图书馆中按顺序生成查询。对于每个查询,排序应用于排序一组相关项目,用户从中选择自己喜欢的项目。这是在万维网上对网页或电子商务网站上的商品搜索结果进行排名时的情况。在这项工作中,我们提出了一种新的在线排名算法,叫做noregritklrank。我们的算法旨在使用用户提供的“点击”信息来改进未来的排名决策。更重要的是,我们表明,它的长期平均性能将收敛到任何竞争性的固定排名政策所能达到的最好的速度,这是事后诸葛亮的选择。我们将演示如何确保该属性在新项目添加到集合中时继续保持不变,从而需要更丰富的级别策略。最后,我们的经验结果表明,虽然在某些情况下,noregrit klrank可能被认为是保守的,但这种算法的贪婪变体实际上优于许多流行的排名算法。
课程简介: The most common environment in which ranking is used takes a very specific form. Users sequentially generate queries in a digital library. For each query, ranking is applied to order a set of relevant items from which the user selects his favorite. This is the case when ranking search results for pages on the World Wide Web or for merchandize on an e-commerce site. In this work, we present a new online ranking algorithm, called NoRegret KLRank. Our algorithm is designed to use "clickthrough" information as it is provided by the users to improve future ranking decisions. More importantly, we show that its long term average performance will converge to the best rate achievable by any competing fixed ranking policy selected with the benefit of hindsight. We show how to ensure that this property continues to hold as new items are added to the set thus requiring a richer class of ranking policies. Finally, our empirical results show that, while in some context NoRegret KLRank might be considered conservative, a greedy variant of this algorithm actually outperforms many popular ranking algorithms.
关 键 词: 数字图书馆; 在线排序算法; 排名政策
课程来源: 视频讲座网
最后编审: 2019-12-26:cwx
阅读次数: 62