0


用户在网上论坛中的分组行为

User Grouping Behavior in Online Forums
课程网址: http://videolectures.net/kdd09_shi_ugbof/  
主讲教师: Xiaolin Shi
开课单位: Snapchat公司
开课时间: 2009-09-14
课程语种: 英语
中文简介:
在线论坛代表了一种社会媒体,对于研究人类在信息寻求和传播中的行为特别丰富。用户加入社区的方式反映了他们对信息兴趣的变化和扩大。本文研究了用户参与行为的模式,以及影响用户参与行为的特征因素。我们发现,尽管网络论坛中的结构性关系相对随机性和承诺度较低,但用户的社区参与行为呈现出较强的规律性。一个特别有趣的观察是,由在线回复定义的用户之间非常弱的关系具有与真正的友谊或合著者相似的扩散曲线。建立了社会选择模型,即二部马尔可夫随机场(BIMRF),定量评价了这些特征因子的预测性能及其相互关系。利用这些模型,我们发现一些特征带有补充信息,不同类型的论坛中不同特征的有效性也不同。此外,采用双星配置的BIMRF的结果表明,由通信频率或普通朋友数定义的用户相似性特征不足以预测分组行为,但添加节点级特征可以提高模型的拟合度。
课程简介: Online forums represent one type of social media that is particularly rich for studying human behavior in information seeking and diffusing. The way users join communities is a reflection of the changing and expanding of their interests toward information. In this paper, we study the patterns of user participation behavior, and the feature factors that influence such behavior on different forum datasets. We find that, despite the relative randomness and lesser commitment of structural relationships in online forums, users' community joining behaviors display some strong regularities. One particularly interesting observation is that the very weak relationships between users defined by online replies have similar diffusion curves as those of real friendships or co-authorships. We build social selection models, Bipartite Markov Random Field (BiMRF), to quantitatively evaluate the prediction performance of those feature factors and their relationships. Using these models, we show that some features carry supplementary information, and the effectiveness of different features vary in different types of forums. Moreover, the results of BiMRF with two-star configurations suggest that the feature of user similarity defined by frequency of communication or number of common friends is inadequate to predict grouping behavior, but adding node-level features can improve the fit of the model.
关 键 词: 在线论坛; 人类行为; 社会媒体
课程来源: 视频讲座网
最后编审: 2019-12-20:lxf
阅读次数: 67