0


在基于组的操纵交易行为中检测异常耦合序列和序列变化

Detecting Abnormal Coupled Sequences and Sequence Changes in Group-based Manipulative Trading Behaviors
课程网址: http://videolectures.net/kdd2010_cao_dacss/  
主讲教师: Longbing Cao
开课单位: 悉尼科技大学
开课时间: 2010-10-01
课程语种: 英语
中文简介:
在资本市场监管中,一种新兴的趋势是,一组隐藏的操纵者相互协作,操纵三个交易序列:买入、卖出和交易,通过仔细安排它们的价格、数量和时间,以误导其他投资者,影响工具的移动,从而最大限度地提高个人B。En拟合如果在试图分析这种隐藏的基于群体的行为时只关注上述三个序列中的一个,或者如果按照投资者的要求将它们合并成一个序列,则通过交易行为显示的它们之间的耦合关系及其价格/数量/次数将丢失,由此得出的结果具有很高的可能性。在商业中不符合真实事实的能力。因此,典型的序列分析方法,主要是识别单个序列上的模式,不能在这里使用。本文提出了一个新的课题,即隐群中的耦合行为分析。特别地,我们提出了一种基于耦合隐马尔可夫模型(HMM)的方法来检测异常的基于群体的交易行为。所得到的模型满足(1)来自一组人的多个序列,(2)他们之间的相互作用,(3)序列项属性,以及(4)耦合序列之间的显著变化。我们演示了在订单级库存数据上检测异常操纵交易行为的方法。从技术和计算两个角度,根据交易所监控系统生成的警报对结果进行评估。结果表明,在不考虑耦合关系的情况下,所提出的耦合HMM和自适应HMM的性能优于仅对任何单个序列进行建模的标准HMM,或组合多个单个序列的HMM。进一步的耦合行为分析工作,包括耦合序列/事件分析、隐藏组分析和行为动力学都非常关键。
课程简介: In capital market surveillance, an emerging trend is that a group of hidden manipulators collaborate with each other to manipulate three trading sequences: buy-orders, sell-orders and trades, through carefully arranging their prices, volumes and time, in order to mislead other investors, affect the instrument movement, and thus maximize personal benefits. If the focus is on only one of the above three sequences in attempting to analyze such hidden group based behavior, or if they are merged into one sequence as per an investor, the coupling relationships among them indicated through trading actions and their prices/volumes/times would be missing, and the resulting findings would have a high probability of mismatching the genuine fact in business. Therefore, typical sequence analysis approaches, which mainly identify patterns on a single sequence, cannot be used here. This paper addresses a novel topic, namely coupled behavior analysis in hidden groups. In particular, we propose a coupled Hidden Markov Models (HMM)-based approach to detect abnormal group-based trading behaviors. The resulting models cater for (1) multiple sequences from a group of people, (2) interactions among them, (3) sequence item properties, and (4) significant change among coupled sequences. We demonstrate our approach in detecting abnormal manipulative trading behaviors on orderbook-level stock data. The results are evaluated against alerts generated by the exchange's surveillance system from both technical and computational perspectives. It shows that the proposed coupled and adaptive HMMs outperform a standard HMM only modeling any single sequence, or the HMM combining multiple single sequences, without considering the coupling relationship. Further work on coupled behavior analysis, including coupled sequence/event analysis, hidden group analysis and behavior dynamics are very critical.
关 键 词: 交易序列; 耦合关系; 隐马尔可夫模型; 耦合行为分析
课程来源: 视频讲座网
最后编审: 2020-01-16:chenxin
阅读次数: 37