0


迭代聚集大图中的并行计算研究

Parallel SimRank Computation on Large Graphs with Iterative Aggregation
课程网址: http://videolectures.net/kdd2010_he_psrclgia/  
主讲教师: Guoming He
开课单位: 中国人民大学
开课时间: 2010-10-01
课程语种: 汉简
中文简介:
近年来,人们对基于图形的分析方法产生了浓厚的兴趣。基于图的分析最重要的一个方面是测量图中节点之间的相似性。simrank是一种基于立体图理论模型的简单而有影响的度量方法。然而,现有的单列计算方法存在两个局限性:1)实际计算成本很高;2)只能应用于静态图。本文利用图形处理单元(GPU)固有的并行性和高内存带宽来加速大图上的单模秩计算。此外,在观察到simrank本质上是一阶马尔可夫链的基础上,我们提出利用迭代聚合技术解偶马尔可夫链,并行计算大图的simrank分数。迭代聚集法可以应用于动态图。不仅可以解决链路更新问题,还可以解决节点更新问题。对合成数据集和真实数据集进行了大量的实验,验证了该方法的有效性和有效性。
课程简介: Recently there has been a lot of interest in graph-based analysis. One of the most important aspects of graph-based analysis is to measure similarity between nodes in a graph. SimRank is a simple and influential measure of this kind, based on a solid graph theoretical model. However, existing methods on SimRank computation suffer from two limitations: 1) the computing cost can be very high in practice; and 2) they can only be applied on static graphs. In this paper, we exploit the inherent parallelism and high memory bandwidth of graphics processing units (GPU) to accelerate the computation of SimRank on large graphs. Furthermore, based on the observation that SimRank is essentially a first-order Markov Chain, we propose to utilize the iterative aggregation techniques for uncoupling Markov chains to compute SimRank scores in parallel for large graphs. The iterative aggregation method can be applied on dynamic graphs. Moreover, it can handle not only the link-updating problem but also the node-updating problem. Extensive experiments on synthetic and real data sets verify that the proposed methods are efficient and effective.
关 键 词: 图论模型; 并行性; 图形处理单元; 马尔可夫链
课程来源: 视频讲座网
最后编审: 2019-12-21:lxf
阅读次数: 63