0


隐私保护的多功能出版

Versatile Publishing For Privacy Preservation
课程网址: http://videolectures.net/kdd2010_jin_vppp/  
主讲教师: Xin Jin
开课单位: 乔治华盛顿大学
开课时间: 2010-10-01
课程语种: 英语
中文简介:
由于现有的准标识符/敏感属性(qi-sa)框架对数据发布的真实隐私需求建模不足,我们提出了一种新的通用发布方案,其中隐私需求可以指定为微数据表中属性的任意隐私规则集。为了实现多功能发布,我们引入了guardian normal form(gnf),这是一种新的发布多个子表的方法,使得每个子表都被现有的qi-sa发布算法匿名,而所有已发布表的组合保证了所有隐私规则。我们设计了两种算法,guardian分解(gd)和效用感知分解(uad),用于将微数据表分解为GNF,并对现实数据集进行了大量实验,以证明这两种算法的有效性。
课程简介: Motivated by the insufficiency of the existing quasi-identifier/sensitive-attribute (QI-SA) framework on modeling real-world privacy requirements for data publishing, we propose a novel versatile publishing scheme with which privacy requirements can be specified as an arbitrary set of privacy rules over attributes in the microdata table. To enable versatile publishing, we introduce the Guardian Normal Form (GNF), a novel method of publishing multiple sub-tables such that each sub-table is anonymized by an existing QI-SA publishing algorithm, while the combination of all published tables guarantees all privacy rules. We devise two algorithms, Guardian Decomposition (GD) and Utility-aware Decomposition (UAD), for decomposing a microdata table into GNF, and present extensive experiments over real-world datasets to demonstrate the effectiveness of both algorithms.
关 键 词: 准标识符; 敏感属性; 隐私规则; 算法有效性
课程来源: 视频讲座网
最后编审: 2020-06-15:heyf
阅读次数: 54