社交网络的邻居查询友好压缩Neighbor Query Friendly Compression of Social Networks |
|
课程网址: | http://videolectures.net/kdd2010_maserrat_nqfcsn/ |
主讲教师: | Hossein Maserrat |
开课单位: | 西蒙弗雷泽大学 |
开课时间: | 信息不详。欢迎您在右侧留言补充。 |
课程语种: | 英语 |
中文简介: | 压缩社交网络可以极大地促进大型社交网络的挖掘和高级分析。最好的做法是,社会网络的压缩方式应该能够使它们在没有解压的情况下仍然能够有效地被查询。可以说,邻居查询(搜索查询顶点的所有邻居)是社交网络上最基本的操作。我们能以邻域查询友好的方式有效地压缩社交网络吗?也就是说,邻域查询仍然可以在次线性时间内通过压缩得到响应。本文利用有向图的多位置线性化,提出了一种新的欧拉数据结构,实现了一种有效的社会网络压缩方法。我们的方法有一个关于压缩率的非平凡理论界。据我们所知,我们的方法是第一个在次线性时间内同时回答邻居和邻居查询的方法。对十几个基准真实数据集进行了广泛的实证研究,验证了我们的设计。 |
课程简介: | Compressing social networks can substantially facilitate mining and advanced analysis of large social networks. Preferably, social networks should be compressed in a way that they still can be queried efficiently without decompression. Arguably, neighbor queries, which search for all neighbors of a query vertex, are the most essential operations on social networks. Can we compress social networks effectively in a neighbor query friendly manner, that is, neighbor queries still can be answered in sublinear time using the compression? In this paper, we develop an effective social network compression approach achieved by a novel Eulerian data structure using multi-position linearizations of directed graphs. Our method comes with a nontrivial theoretical bound on the compression rate. To the best of our knowledge, our approach is the first that can answer both out-neighbor and in-neighbor queries in sublinear time. An extensive empirical study on more than a dozen benchmark real data sets verifies our design. |
关 键 词: | 社交网络; 邻居查询; 线性化; 压缩方法 |
课程来源: | 视频讲座网 |
最后编审: | 2019-12-26:cwx |
阅读次数: | 62 |