0


学习高维数据中低维角色的混合模式

Mixture Models for Learning Low-dimensional Roles in High-dimensional Data
课程网址: http://videolectures.net/kdd2010_somaiya_mml/  
主讲教师: Manas Somaiya
开课单位: 佛罗里达大学
开课时间: 2010-10-01
课程语种: 英语
中文简介:
存档数据通常描述参与多个角色的实体。这些角色中的每一个都可能影响数据的各个方面。例如,在零售店收集的登记交易可能是由女性、母亲、狂热的读者和动作片迷发起的。这些角色中的每一个都会影响到顾客购买的各个方面:顾客是母亲的事实可能会极大地影响到幼儿尺寸的裤子的购买,但对动作冒险小说的购买没有影响。事实上,顾客是一个动作迷和一个狂热的读者可能会影响小说的购买,但不会影响衬衫的购买。在本文中,我们提出了一个通用的贝叶斯框架来准确捕获这种情况。在我们的框架中,假设存在多个角色,并且每个数据点对应一个实体(例如零售客户、电子邮件或新闻文章),该实体选择不同的角色来影响与数据点关联的各种属性。我们开发了用于在框架下学习模型的强大的MCMC算法。
课程简介: Archived data often describe entities that participate in multiple roles. Each of these roles may influence various aspects of the data. For example, a register transaction collected at a retail store may have been initiated by a person who is a woman, a mother, an avid reader, and an action movie fan. Each of these roles can influence various aspects of the customer's purchase: the fact that the customer is a mother may greatly influence the purchase of a toddler-sized pair of pants, but have no influence on the purchase of an action-adventure novel. The fact that the customer is an action move fan and an avid reader may influence the purchase of the novel, but will have no effect on the purchase of a shirt. In this paper, we present a generic, Bayesian framework for capturing exactly this situation. In our framework, it is assumed that multiple roles exist, and each data point corresponds to an entity (such as a retail customer, or an email, or a news article) that selects various roles which compete to influence the various attributes associated with the data point. We develop robust, MCMC algorithms for learning the models under the framework.
关 键 词: 学习模型; 贝叶斯框架; 竞争影响
课程来源: 视频讲座网
最后编审: 2019-12-21:lxf
阅读次数: 34