网络基因与药物:从大规模实验数据中了解基因的功能和药物作用方式Networking genes and drugs: Understanding gene function and drug mode of action from large-scale experimental data |
|
课程网址: | http://videolectures.net/licsb2010_bernardo_igr/ |
主讲教师: | Diego di Bernardo |
开课单位: | Telethon遗传与医学研究所 |
开课时间: | 2010-05-03 |
课程语种: | 英语 |
中文简介: | 一个基因调控网络,如果两个基因直接或功能上相互调节,则它们是相互连接的,可以从大规模的实验数据(如基因表达谱)中“反向工程”。这里使用了一种简单但有效的逆向工程方法,利用哺乳动物所有可用的基因表达谱,解决了处理、规范化和分析此类海量数据集的问题。我们从一组20255(8895)基因表达谱中反向构建了智人(mus musculus)共表达网络。人类(小鼠)网络的特征是一组22283(45101)个节点(即基因)和一组4817629(14641095)个边缘,其中边缘由两个基因之间的相互信息(mi)度量加权。我们展示了如何利用由此产生的网络来理解基因的功能、基因调控的模块性,以及作为分析基因特征以确定药物作用模式的工具。我们还将展示如何使用基因表达谱构建一个药物网络,在该网络中,药物可以自动分组到共享类似作用模式的药物子网络(“社区”)中。 |
课程简介: | A gene regulatory network, where two genes are connected if they are directly, or functionally, regulating each other, can be 'reverse-engineered' from large-scale experimental data such as gene expression profiles. Here used a simple but effective reverse-engineering approach using all the available gene expression profiles in mammals, solving along the way the problems of handling, normalizing and analysing such massive dataset. We reverse-engineered a coexpression network for Homo Sapiens (Mus Musculus) from a set of 20,255 (8895) gene expression profiles. The human (mouse) network is characterized by a set of 22283 (45101) nodes (i.e. genes) and a set of 4,817,629 (14,641,095) edges, where the edge is weighted by the Mutual Information (MI) measure between the two genes. We show how the resulting network can be then used to understand the function of a gene, the modularity of gene regulation, as well as, as a tool to analyse "gene signatures" to identify the mode of action of a drug. We will also show how it is possible to use gene expression profile to build a "drug network", where drugs can be automatically grouped in subnetworks ('communities') of drugs sharing a similar mode of action. |
关 键 词: | 基因调控网络; 逆向工程; 基因表达谱 |
课程来源: | 视频讲座网 |
最后编审: | 2019-12-27:lxf |
阅读次数: | 64 |