三维的目标检测与可变形的三维长方体模型的观点估计3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model |
|
课程网址: | http://videolectures.net/machine_fidler_object_detection/ |
主讲教师: | Sanja Fidler |
开课单位: | 多伦多大学 |
开课时间: | 2013-01-14 |
课程语种: | 英语 |
中文简介: | 本文讨论了类别级三维目标检测问题。对于单眼图像,我们的目标是通过使用紧密定向的三维边界框将对象包围在三维中,从而使其本地化。我们提出了一种新的方法,将广受欢迎的基于可变形零件的模型[FELZ]扩展到三维推理中。我们的模型将一个对象类表示为一个由面和零件组成的可变形三维长方体,这两个面和零件都允许相对于其在三维框上的定位点变形。我们在正面平行坐标系下对每个面的外观进行建模,从而有效地分解了视点引起的外观变化。我们的模型关于人脸可见性模式的原因称为方面。我们共同和有区别地训练长方体模型,并在各个方面共享权重,以获得效率。然后推理需要在3D中滑动和旋转盒子,并对目标进行评分。对于推理,我们离散搜索空间,变量在我们的模型中是连续的。我们证明了我们的方法在室内和室外场景中的有效性,并表明我们的方法在二维[FELZ09]和三维物体检测[HEDAU12]方面都优于最先进的方法。 |
课程简介: | This paper addresses the problem of category-level 3D object detection. Given a monocular image, our aim is to localize the objects in 3D by enclosing them with tight oriented 3D bounding boxes. We propose a novel approach that extends the well-acclaimed deformable part-based model[Felz.] to reason in 3D. Our model represents an object class as a deformable 3D cuboid composed of faces and parts, which are both allowed to deform with respect to their anchors on the 3D box. We model the appearance of each face in fronto-parallel coordinates, thus effectively factoring out the appearance variation induced by viewpoint. Our model reasons about face visibility patters called aspects. We train the cuboid model jointly and discriminatively and share weights across all aspects to attain efficiency. Inference then entails sliding and rotating the box in 3D and scoring object hypotheses. While for inference we discretize the search space, the variables are continuous in our model. We demonstrate the effectiveness of our approach in indoor and outdoor scenarios, and show that our approach outperforms the state-of-the-art in both 2D[Felz09] and 3D object detection[Hedau12]. |
关 键 词: | 三维目标检测; 可变形部件模型; 锚变形 |
课程来源: | 视频讲座网 |
最后编审: | 2019-12-27:lxf |
阅读次数: | 96 |