一般多类损失的分类标准尺寸Classification Calibration Dimension for General Multiclass Losses |
|
课程网址: | http://videolectures.net/machine_guruprasad_general/ |
主讲教师: | Harish Guruprasad |
开课单位: | 印度科学研究所 |
开课时间: | 2013-01-14 |
课程语种: | 英语 |
中文简介: | 我们研究了由一般损失矩阵定义的一般多类分类问题的替代损失函数的一致性。我们扩展了分类校准的概念,研究了二进制和多类0-1分类问题(以及某些其他特定的学习问题),并将其推广到一般的多类设置中,并推导出了根据损失矩阵对替代损失进行分类校准的必要和充分条件。此设置。然后,我们介绍了多类损失矩阵的分类校准维数的概念,该维数测量预测空间的最小“尺寸”,对于该预测空间,可以设计一个凸替代项,该替代项是针对损失矩阵进行分类校准的。我们推导了这个量的上界和下界,并用这些结果来分析各种损失矩阵。特别是,作为一个应用,我们提供了与Duchi等人(2010)最近的结果不同的路线,用于分析设计与成对子集排序损失一致的“低维”凸代理的难度。我们预计分类校正维数可能被证明是研究和设计一般多类学习问题的替代损失的一个有用工具。 |
课程简介: | We study consistency properties of surrogate loss functions for general multiclass classification problems, defined by a general loss matrix. We extend the notion of classification calibration, which has been studied for binary and multiclass 0-1 classification problems (and for certain other specific learning problems), to the general multiclass setting, and derive necessary and sufficient conditions for a surrogate loss to be classification calibrated with respect to a loss matrix in this setting. We then introduce the notion of \emph{classification calibration dimension} of a multiclass loss matrix, which measures the smallest `size' of a prediction space for which it is possible to design a convex surrogate that is classification calibrated with respect to the loss matrix. We derive both upper and lower bounds on this quantity, and use these results to analyze various loss matrices. In particular, as one application, we provide a different route from the recent result of Duchi et al.\ (2010) for analyzing the difficulty of designing `low-dimensional' convex surrogates that are consistent with respect to pairwise subset ranking losses. We anticipate the classification calibration dimension may prove to be a useful tool in the study and design of surrogate losses for general multiclass learning problems. |
关 键 词: | 一般多类分类问题; 损失函数; 二进制; 标准尺寸 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-15:heyf |
阅读次数: | 46 |