首页应用数学
   首页函数论
   首页概率论
0


排序方法在秩函数的概率空间中的统计一致性

Statistical Consistency of Ranking Methods in A Rank-Differentiable Probability Space
课程网址: http://videolectures.net/machine_lan_space/  
主讲教师: Yanyan Lan
开课单位: 中国科学院
开课时间: 2013-01-14
课程语种: 英语
中文简介:
本文研究了排序方法的统计一致性。近年来,研究证明,许多常用的成对排序方法与加权成对不一致损失(wpdl)不一致,即使在低噪声环境下,也可以看作是真正的排名损失。这一结果是有趣的,但也令人惊讶,鉴于配对排名方法已显示出非常有效的实践。在本文中,我们认为,根据所使用的假设类型,上述结果可能不是决定性的。我们给出了一个新的假设,即被排序对象的标签位于一个秩可微概率空间(RDP),并证明了在这个假设下,成对排序方法与WPDL是一致的。特别令人鼓舞的是,RDP实际上并不比低噪声环境强,但与低噪声环境相似。我们的研究为以前无法解释的成对排序方法的一些实证结果提供了理论依据,从而填补了理论与应用之间的空白。
课程简介: This paper is concerned with the statistical consistency of ranking methods. Recently, it was proven that many commonly used pairwise ranking methods are inconsistent with the weighted pairwise disagreement loss (WPDL), which can be viewed as the true loss of ranking, even in a low-noise setting. This result is interesting but also surprising, given that the pairwise ranking methods have been shown very effective in practice. In this paper, we argue that the aforementioned result might not be conclusive, depending on what kind of assumptions are used. We give a new assumption that the labels of objects to rank lie in a rank-differentiable probability space (RDPS), and prove that the pairwise ranking methods become consistent with WPDL under this assumption. What is especially inspiring is that RDPS is actually not stronger than but similar to the low-noise setting. Our studies provide theoretical justifications of some empirical findings on pairwise ranking methods that are unexplained before, which bridge the gap between theory and applications.
关 键 词: 排名方法; 统计一致性; 秩函数的概率空间; 低噪声环境
课程来源: 视频讲座网
最后编审: 2020-10-22:chenxin
阅读次数: 38