0


深时空结构和学习蛋白质结构预测

Deep Spatio-Temporal Architectures and Learning for Protein Structure Prediction
课程网址: http://videolectures.net/machine_nagata_prediction/  
主讲教师: Ken Nagata
开课单位: 加利福尼亚大学
开课时间: 2013-01-14
课程语种: 英语
中文简介:
残余物接触预测是蛋白质结构预测中的一个基本问题。然而,尽管进行了大量的研究工作,接触预测方法仍然在很大程度上不可靠。在这里,我们介绍了一种新的深层机器学习体系结构,它由一个多维的学习模块堆栈组成。对于接触预测,该思想被实现为神经网络的三维堆栈nn^k_i j,其中i和j索引接触图的空间坐标,k索引“时间”。引入时间维度来捕捉这样一个事实,即蛋白质折叠不是一个瞬时过程,而是一个渐进的精炼过程。堆栈中k级的网络可以以有监督的方式进行训练,以改进前一级生成的预测,从而解决渐变消失的问题,这是典型的深层架构。通过与其他经典机器学习方法进行接触预测的严格比较,提高了该方法的准确性和泛化能力。这种深入的方法使难以长期接触的准确度达到约30%,大约比最先进水平高出10%。架构和训练算法的许多变化是可能的,为进一步的改进留下了空间。此外,该方法还适用于具有较强潜在时空成分的其他问题。
课程简介: Residue-residue contact prediction is a fundamental problem in protein structure prediction. Hower, despite considerable research efforts, contact prediction methods are still largely unreliable. Here we introduce a novel deep machine-learning architecture which consists of a multidimensional stack of learning modules. For contact prediction, the idea is implemented as a three-dimensional stack of Neural Networks NN^k_{ij}, where i and j index the spatial coordinates of the contact map and k indexes ''time''. The temporal dimension is introduced to capture the fact that protein folding is not an instantaneous process, but rather a progressive refinement. Networks at level k in the stack can be trained in supervised fashion to refine the predictions produced by the previous level, hence addressing the problem of vanishing gradients, typical of deep architectures. Increased accuracy and generalization capabilities of this approach are established by rigorous comparison with other classical machine learning approaches for contact prediction. The deep approach leads to an accuracy for difficult long-range contacts of about 30%, roughly 10% above the state-of-the-art. Many variations in the architectures and the training algorithms are possible, leaving room for further improvements. Furthermore, the approach is applicable to other problems with strong underlying spatial and temporal components.
关 键 词: 残基接触预测; 机器学习架构; 神经网络; 提高精度; 泛化能力
课程来源: 视频讲座网
最后编审: 2020-03-30:chenxin
阅读次数: 77